深度学习
文章平均质量分 78
撒哈拉土狼
致力于深度学习,图像处理!
展开
-
深度学习环境配置
深度学习环境配置 前两个礼拜一直在折腾深度学习环境配置,现做如下笔记。这里对Ubuntu16.04配置gtx1060深度学习环境: cuda8.0+cudnn5.1+tensorflow0.11+theano0.81.装系统 装系统本身很简单,不管是单系统还是双系统。重点是我们得先明白,硬盘分区分为MBR和GPT两种格式,这两种硬盘格式对相应系统是不兼容的。 早期的硬盘分区格式为MBR格原创 2016-12-30 17:59:02 · 2857 阅读 · 0 评论 -
深度学习笔记1:神经网络端到端学习笔记
许多重要问题都可以抽象为变长序列学习问题(sequence to sequence learning),如语音识别、机器翻译、字符识别。这类问题的特点是,1) 输入和输出都是序列(如连续值语音信号/特征、离散值的字符),2) 序列长度都不固定,3)并且输入输出序列长度没有对应关系。因此,传统的神经网络模型(DNN, CNN, RNN)不能直接以端到端的方式解决这类问题的建模和学习问题。解决变长序列的原创 2017-01-03 09:53:23 · 6309 阅读 · 0 评论 -
Encoder-Decoder模型和Attention模型
关于attention模型,知乎上很多人都推荐了一篇文章Neural Machine Translation by Jointly Learning to Align and Translate 感觉这篇文章非常的不错,里面还大概阐述了encoder-decoder(编码)模型的概念,以及传统的RNN实现。然后还阐述了自己的attention模型。记录如下:1 Encoder-Decoder模型及R原创 2017-01-03 10:11:32 · 2424 阅读 · 0 评论