特征选择与稀疏学习

特征选择是机器学习预处理的关键,包括过滤式、包裹式和嵌入式方法。过滤式通过相关统计量评估,如Relief算法;包裹式直接优化学习器性能,如LVW算法;嵌入式则在训练过程中自动选择,如决策树。稀疏表示和字典学习用于简化数据,压缩感知则通过信号稀疏性实现从部分观测恢复原始信号。
摘要由CSDN通过智能技术生成

第十一章   特征学习与稀疏学习

https://stackedit.io/editor#

1 子集搜索与评价

  • 我们能用很多属性描述一个西瓜:色泽、根蒂、敲声、纹理、触感等!

  • 根蒂、敲声!

  • 属性 (feature)={ (relevantfeature)(irreleva

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值