NOI大纲——普及组——素数筛法

素数筛的进化史

1.最为基础的筛法——试除法

时间复杂度 O ( n 2 ) O(n^2) O(n2)

int a[10000],tot=0,n;
for (int i=2;i<=n;i++){
    bool flag=false;
    for (int j=2;j<i;j++){
        if (i%j==0)flag=true;
    }
    if (flag==false){
        a[tot]=i;
        tot++;
    }
}
for (int i=0;i<tot;i++){
    cout<<a[i]<<" ";
}
//筛1到n的质数

2.试除法的优化

时间复杂度 O ( n × n ) O(n\times \sqrt{n}) O(n×n )

int a[10000],tot=0,n;
for (int i=2;i<=n;i++){
    bool flag=false;
    for (int j=2;j<=sqrt(i);j++){
        if (i%j==0)flag=true;
    }
    if (flag==false){
        a[tot]=i;
        tot++;
    }
}
for (int i=0;i<tot;i++){
    cout<<a[i]<<" ";
}
//筛1到n的质数

埃拉托色尼筛法(Eratosthenes Sieve)

埃拉托色尼筛法是一种古老且高效的算法,用于找出某个范围内所有的素数。它的工作原理基于反复标记出合数(即非素数)。其核心思想如下:

  1. 设定一个范围,例如从2到某个整数n。
  2. 从最小的素数2开始,标记2的所有倍数为合数(非素数)。
  3. 找到下一个未被标记的数,它是下一个素数,然后标记这个素数的所有倍数。
  4. 重复步骤3,直到到达范围的尽头。

下面是埃拉托色尼筛法的详细步骤及代码实现:

步骤详解

  1. 初始化数组:创建一个布尔数组isPrime,其大小为n+1,所有元素初始化为true。这个数组用于标记是否为素数。
  2. 标记合数:从2开始,对于每一个isPrime为true的数i,标记i的所有倍数为false。
  3. 终止条件:i的值不超过 n \sqrt{n} n 。因为如果i的值超过 n \sqrt{n} n ,i的倍数中最小的一个已经大于n,因此没有必要继续标记。

代码实现

int a[100000], tot = 0; // 存储素数的数组和计数器
bool ais[100000]; // 标记数组

for (int i = 2; i <= n; i++) { // 从2开始遍历到n
    if (ais[i] == 0) { // 如果i没有被标记为合数
        a[tot++] = i; // 将i存入素数数组
        for (int j = 2; j < n && j * i <= n; j++) { // 从2开始标记i的倍数
            ais[i * j] = 1; // 标记i的倍数为合数
        }
    }
}

for (int i = 0; i < tot; i++) { // 输出所有素数
    cout << a[i] << " ";
}

示例

假设我们要找出30以内的所有素数:

  1. 初始化:isPrime数组为[true, true, true, …, true],长度为31。
  2. 从2开始,标记2的倍数:4, 6, 8, 10, …, 30都标记为false。
  3. 下一个未标记的数是3,标记3的倍数:6, 9, 12, 15, …, 30都标记为false。
  4. 下一个未标记的数是5,标记5的倍数:10, 15, 20, 25, 30都标记为false。
  5. 继续下去,直到√30≈5.48。

结果:2, 3, 5, 7, 11, 13, 17, 19, 23, 29为素数。

欧拉筛(Euler’s Sieve)

欧拉筛法是埃拉托色尼筛法的一种改进版本,它在标记合数时避免了重复工作,因此效率更高。欧拉筛法利用了以下性质:

  1. 每个合数都可以表示为若干素数的乘积。
  2. 对于每个素数p,标记其倍数时,只需从它开始标记,不需要重复标记已经被其他素数标记过的数。

步骤详解

  1. 初始化数组:与埃拉托色尼筛法类似,初始化一个布尔数组isPrime和一个存储素数的数组a。
  2. 标记合数:对于每一个数i,如果它是素数,将其存入数组a,然后标记其所有的合数。
  3. 终止条件:当i的值达到n时停止。

代码实现

const int MAXN = 100000; // 定义常量,最大范围
int a[MAXN], tot = 0; // 存储素数的数组和计数器
bool isPrime[MAXN]; // 标记数组

void eulerSieve(int n) {
    fill(isPrime, isPrime + n + 1, true); // 初始化标记数组,所有元素设为true
    isPrime[0] = isPrime[1] = false; // 0和1不是素数

    for (int i = 2; i <= n; i++) { // 从2开始遍历到n
        if (isPrime[i]) { // 如果i是素数
            a[tot++] = i; // 将i存入素数数组
        }
        for (int j = 0; j < tot && a[j] * i <= n; j++) { // 遍历所有已存入的素数
            isPrime[a[j] * i] = false; // 标记a[j]和i的乘积为合数
            if (i % a[j] == 0) break; // 如果i是a[j]的倍数,停止标记
        }
    }

    // 输出所有素数
    for (int i = 0; i < tot; i++) {
        cout << a[i] << " ";
    }
    cout << endl;
}

示例

假设我们要找出30以内的所有素数:

  1. 初始化:isPrime数组为[true, true, true, …, true],长度为31。
  2. 从2开始,2是素数,存入数组a,标记2的倍数:4, 6, 8, 10, …, 30都标记为false。
  3. 下一个未标记的数是3,3是素数,存入数组a,标记3的倍数:6, 9, 12, 15, …, 30都标记为false。
  4. 继续下去,直到i达到30。

结果:2, 3, 5, 7, 11, 13, 17, 19, 23, 29为素数。

两种算法的比较

  • 效率:欧拉筛法避免了重复标记合数,因此在实际应用中效率比埃拉托色尼筛法更高。
  • 复杂度:两种算法的时间复杂度都是O(n log log n),但欧拉筛法的常数项更小。
  • 空间使用:两种算法都需要一个大小为n+1的布尔数组,因此在空间使用上没有显著差别。
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值