机器学习
cyq0122
图像处理
展开
-
线性SVM还是非线性SVM
转载SVM的应用领域很广,分类、回归、密度估计、聚类等,但我觉得最成功的还是在分类这一块。 用于分类问题时,SVM可供选择的参数并不多,惩罚参数C,核函数及其参数选择。对于一个应用,是选择线性核,还是多项式核,还是高斯核?还是有一些规则的。 实际应用中,多数情况是特征维数非常高。如OCR中的汉字识别,提取8方向梯度直方图特征,归一化的字符被等分成8*转载 2014-05-17 10:58:27 · 993 阅读 · 0 评论 -
逻辑回归、线性回归、最小二乘、极大似然、梯度下降
转自http://www.zhihu.com/question/24900876机器学习的基本框架大都是模型、目标和算法!重要的事情说三遍!对于一个数据集,首先你要根据数据的特点和目的来选择合适模型。就你问的而言,选定的模型是Logistic Regression。现在既然已经选择了模型,那么接下来的问题是:怎么才能让这个模型尽可能好的拟合或者分类数据呢?那么就需要有目转载 2015-10-14 15:31:41 · 3862 阅读 · 0 评论