原题:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps
Example 2:
Input: 3 Output: 3 Explanation: There are three ways to climb to the top. 1. 1 step + 1 step + 1 step 2. 1 step + 2 steps 3. 2 steps + 1 step
一道动态规划基础题,首先用基本递归算法,f(n)=f(n-1)+f(n-2),代码:
class Solution {
public:
int climbStairs(int n) {
if (n==0){return 1;}
else if (n==1){return 1;}
return climbStairs(n-1)+climbStairs(n-2);
}
};
想都不用想计算量随n的增大指数级增长(O(2^n))肯定超时,所以要用到动态规划,动态规划有两种实现方法:
(1)备忘录:
设置一个数组栈保存已经计算过的结果,时间复杂度O(n),但是空间复杂度高,根据前面做题经验(其实也没多少),使用c++自带的vector容器比自己写栈或者队列效率高,结果如下:
Success
Runtime: 0 ms, faster than 100.00% of C++ online submissions for Climbing Stairs.
Memory Usage: 8.3 MB, less than 93.40% of C++ online submissions for Climbing Stairs.
代码:
class Solution {
public:
int climbStairs(int n) {
vector <int> r;
r.push_back(1);
r.push_back(1);
int i =2;
while(i<=n){
r.push_back(r[i-2]+r[i-1]);
i++;
}
return r[i-1];
}
};
(2)自底向上:
因为每次计算只依赖之前的两次计算结果,其实只要两个int变量就够用了,在原来基础上改就行,注意当n=1或0时的特殊情况,结果如下:
Success
Runtime: 0 ms, faster than 100.00% of C++ online submissions for Climbing Stairs.
Memory Usage: 8.3 MB, less than 97.33% of C++ online submissions for Climbing Stairs.
代码:
class Solution {
public:
int climbStairs(int n) {
if(n==0||n==1){return 1;}
int a=1,b=1;
int r=0;
int i =2;
while(i<=n){
r=a+b;
b=a;
a=r;
i++;
}
return r;
}
};