从零开始的LC刷题(18): Climbing Stairs 动态规划基础题

原题:

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

一道动态规划基础题,首先用基本递归算法,f(n)=f(n-1)+f(n-2),代码:

class Solution {
public:
    int climbStairs(int n) {
        if (n==0){return 1;}
        else if (n==1){return 1;}
        return climbStairs(n-1)+climbStairs(n-2);
    }
};

想都不用想计算量随n的增大指数级增长(O(2^n))肯定超时,所以要用到动态规划,动态规划有两种实现方法:

(1)备忘录:

设置一个数组栈保存已经计算过的结果,时间复杂度O(n),但是空间复杂度高,根据前面做题经验(其实也没多少),使用c++自带的vector容器比自己写栈或者队列效率高,结果如下:

Success

Runtime: 0 ms, faster than 100.00% of C++ online submissions for Climbing Stairs.

Memory Usage: 8.3 MB, less than 93.40% of C++ online submissions for Climbing Stairs.

代码:

class Solution {
public:
    int climbStairs(int n) {
        vector <int> r;
        r.push_back(1);
        r.push_back(1);
        int i =2;
        while(i<=n){
            r.push_back(r[i-2]+r[i-1]);
            i++;
        }
        return r[i-1];
        
    }
};

(2)自底向上:

因为每次计算只依赖之前的两次计算结果,其实只要两个int变量就够用了,在原来基础上改就行,注意当n=1或0时的特殊情况,结果如下:

Success

Runtime: 0 ms, faster than 100.00% of C++ online submissions for Climbing Stairs.

Memory Usage: 8.3 MB, less than 97.33% of C++ online submissions for Climbing Stairs.

代码:

class Solution {
public:
    int climbStairs(int n) {
        if(n==0||n==1){return 1;}
        int a=1,b=1;
        int r=0;
        int i =2;
        while(i<=n){
            r=a+b;
            b=a;
            a=r;
            i++;
        }
        return r;
        
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值