二叉树的销毁(O(1)空间复杂度)

本文主要介绍二叉树的删除。
一、递归
算法思想:
在释放某节点时,该节点的左、右子树都已经释放,所以,应该采用后序遍历。

二、非递归
同时要求:不能使用栈,空间复杂度必须为O(1)
算法思想:借助链栈,同时把每个节点的左指针(lchild)看成是链栈中的next指针,然后将后序遍历中需要压入栈的节点原地连成一个链式栈。

补充:链式栈简介
(1)栈的链接存储结构称为链栈。
(2)通常链栈用单链表表示,因此其节点结构与单链表的节点结构相同。因为只能在栈顶执行插入和删除操作,显然以单链表的头部作栈顶是最方便的,而且没有必要像单链表那样为了运算方便附加一个头节点。
(3)空栈时,由于链栈不带头节点,因此只需将栈顶指针top置为空。
(4)入栈和出栈:链栈的插入操作和删除操作只需要处理栈顶即第一个位置的情况,而无需考虑其他位置的情况。
(5)取栈顶元素:只需返回栈顶指针top所指节点的数据域。
(6)判空操作:只需判断top = NULL是否成立,若成立,则栈为空。

具体实现如下:

#include <iostream>
using namespace std;

typedef struct node
{
    char data;
    struct node *lchild;
    struct node *rchild;
}BiNode, *BiTree;


// 先序建立二叉树 (输入时,按先序次序输入二叉树中结点的值,以 # 字符表示空树)
BiTree createBiTree()
{
    BiTree T;

    char c;
    scanf("%c", &c);

    if (c == '#')
        T = NULL;
    else
    {
        T = new BiNode;  // 或 T = (BiTree)malloc(sizeof(BiNode));
        T->data = c;

        T->lchild = createBiTree();
        T->rchild = createBiTree();
    }

    return T;

}


// 二叉树的销毁(递归)
void releaseTree2(BiTree &T)  // 此处的参数使用引用形式,仅是为了防止出现打印异常。
{
    if (T != NULL)
    {
        releaseTree2(T->lchild);
        releaseTree2(T->rchild);
        delete T;
        T = NULL;

    }
}


// 二叉树的销毁(非递归+O(1)空间复杂度)
void releaseTree(BiTree &root) // 此处的参数使用引用形式,仅是为了防止出现打印异常。
{
    BiTree top = NULL; // 链式栈的栈顶(此时为NULL,即空栈)
    BiTree temp, q;

    temp = root->lchild; // 先将二叉树根节点的左孩子保存在temp变量中
    root->lchild = top; // 此处的lchild相当于单链表中的next,所以此处是让根节点入链式栈,栈底元素为NULL;注意链式栈和顺序栈的区别。
    top = root; // 链式栈的栈顶此时为root

    while(top != NULL)
    {
        while(temp != NULL) // 通过循环,将根节点的左子树(还有左子树的左子树,...)的根节点,加入链式栈
        {
            q = temp;
            temp = q->lchild; // 始终用temp来保存当前子树根节点的左孩子
            q->lchild = top; // 当前子树的根节点入链式栈
            top = q; // 链式栈的栈顶此时为q
        }
        temp = top; // 此时的temp对应的栈顶top,是整棵树的最左子树的根节点
        if(temp->rchild != NULL)
        {
            q = temp;
            temp = q->rchild; // 将当前栈顶节点的右子树非空,则将该右子树保存到temp变量中,在下一次循环时,再次进入到while(temp != NULL),然后将该子树的左子树(还有左子树的左子树,...)的根节点,加入链式栈。
            q->rchild = NULL;  // 此时已经使用过当前栈顶节点的rchild来访问,不会再次使用,故清空。
        }
        else
        {
            top = temp->lchild; // 若当前栈顶节点的右子树为空,则当前栈顶节点出链式栈。出栈前,先改变栈顶指针。
            free(temp); // 释放当前栈顶节点
            temp = NULL; // 指针清空
        }
    }

    root = NULL; // 最后清空根节点指针
}


// 前序遍历
void PreOrderTraverse(BiTree T)
{
    if (T)
    {
        printf("%c\n", T->data);
        PreOrderTraverse(T->lchild);
        PreOrderTraverse(T->rchild);

    }
}

int main(int argc, const char * argv[]) {

    BiTree T = createBiTree(); // 建立

    PreOrderTraverse(T);

    printf("---------------------\n");

    releaseTree(T); // 非递归
    PreOrderTraverse(T);


//    releaseTree2(T); // 递归
//    PreOrderTraverse(T);
//   // 销毁后,再执行打印时,应该打印为空,但是可能会打印出一些其他数据(如a),why?
//   // 原因:此处销毁二叉树时,传入的二叉树的根节点(T)是值传递,即使在销毁的过程中对T做了清空操作(T = NULL)也没用,仍然有可能会打印出其他数据。
//   // 解决方案:直接传递引用即可,例如,把releaseTree2函数的参数改为引用形式,void releaseTree2(BiTree &T)。

    return 0;
}

输入输出示例如下:
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值