sgu 232


(imodk)modn=(jmodk)modnij=pk+qn=tgcd(n,k)
所以问题转变为:有 gcd(n,k) 个本质不同的字符串,每个字符串长度都为 n/gcd(n,k) , 求它们中字典序最大的字符串。


最大表示法。 时间复杂度 O(n)


注意输出时要补成 n <script type="math/tex" id="MathJax-Element-773">n</script> 位。


#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

const int maxn = 150005;
int n, k, len;

char d[maxn];
bool hash[maxn];

char s[maxn<<1];int sl;
char ans[maxn];int at;

int gcd(int a,int b)
{
    return (!b)?a:gcd(b,a%b);
}
int getmax()
{
    for(int i = 0; i < sl; i++)
        s[i+sl] = s[i];

    int i = 0, j = 1, k = 0;
    while(i < sl && j < sl)
    {
        if(k == sl) break;

        if(s[i+k] > s[j+k])
            j += k+1, k = 0;
        else if(s[i+k] < s[j+k])
            i += k+1, k = 0;
        else
            k++;        

        if(i == j) j++;
    }
    return i;
}
bool compare(int t, int x)
{
    for(int i = 0; i < len; i++)
    {
        if(d[t] > d[x])
            return true;
        else if(d[t] < d[x])
            return false;
        else
        {
            t = (t+k)%n;
            x = (x+k)%n;
        }
    }
    return false;
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("sgu232.in","r",stdin);
    freopen("sgu232.out","w",stdout);
#endif

    std::cin >> n >> k;

    scanf("%s", d);

    len = n/gcd(n,k);

    for(int i = 0; i < n; i++)
        if(!hash[i])
        {
            int t = i; sl = 0;
            while(!hash[t])
            {
                hash[t] = true;
                s[sl++] = d[t];
                t = (t+k)%n;
            }

            int st = ((long long)k*getmax() + i)%n;

            if(compare(st, at)) at = st;
        } 

    for(int i = 0; i < n; i++)
        ans[i] = d[at], at = (at+k)%n;

    printf("%s", ans);

#ifndef ONLINE_JUDGE
    fclose(stdin);
    fclose(stdout);
#endif
    return 0;           
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值