Pytorch教程
文章平均质量分 84
learnrocks100
音频算法,人工智能,语音算法
展开
-
Android加载pytorch模型异常完美解决:The model version must be between 3 and 5But the model version is 7 ()
有时候需要在android app中加载使用pytorch训练的模型文件,选择这样的部署方式的优点:1、使用pytorch提供的mobile库,避免了自己实现模型的推理;2、模型的加载和推理都是在java层,pytorch已经提供了native的实现,我们只需要使用Java的接口进行模型加载和使用,所有细节被封装。github上的pytorch官方的仓:pytorch/android-demo-app里面有相关的示例app,下载下来首先从hello world开始。原创 2023-06-25 14:23:25 · 1033 阅读 · 0 评论 -
循环神经网络RNN用于分类任务
介绍使用RNN进行分类(图像分类)的方法。RNN用于分类任务的结构是多对一结构。假设图像的尺寸是28x28的黑白图片,将每一个张图片作为RNN的输入,每一行作为一个输入特征,所有的行构成一个序列。RNN的输出只选择最后一行的输出(使用out[:, -1, :]),这就是多对一的精髓。最后再套一个全连接层,使用交叉熵作为判断准则。原创 2023-06-16 09:36:18 · 2256 阅读 · 0 评论 -
Pytorch教程:Autograd基础
PyTorch的Autograd特征可以让PyTorch灵活快速的构建机器学习项目。autograd可以实现快速和容易的多重偏微分(梯度)计算。偏微分计算时反向传播神经网络学习的核心。autograd的可以在运行时动态追踪计算,这意味着如果模型有决策分支、或者有在运行时之前长度未知的循环,仍然可以正确的追踪计算,得到正确的梯度进而驱动学习。并且,当模型是通过python构建的,在计算梯度时,PyTorch的autograd比那些依赖于对更加严格结构的模型进行静态分析的框架提供了更多的灵活性。原创 2023-06-13 08:59:43 · 1932 阅读 · 0 评论 -
PyTorch教程:Tensor的使用介绍
Tensor是PyTorch中心的数据抽象,本文深度详细介绍PyTorch的torch.Tensor类。包括创建Tensor的方法,Tensor的shape属性,tensor的数据类型和数学运算,tensor的广播机制,克隆tensor,改变tensor的维数,将tensor转换维Numpy的ndarray以及将ndarray转为为tensor。原创 2023-06-09 09:20:17 · 1505 阅读 · 0 评论