给定输入序列,通过一个FIR线性滤波器
,权系数是
n时刻,FIR滤波器的输出:
n时刻滤波器期望的输出是,期望响应与实际的输出的差值为:
随着输入的变化,要让滤波器实际输出逼近期望响应,需要求解新的滤波器抽头系数,求解过程是一个基于统计优化问题的数学求解。
该数学问题有两种方法进行阐述
通过正交性原理推导最优解需满足的条件
令
如果假定,
都是复数,
对求偏导得
多维梯度向量
上面是考虑了复数权系数和复数随即信号的推倒过程,更加简单的推导是
对
求偏导的
等于0时,
取得最优值。
也就是和
正交时,实际输出
与期望响应
更加接近
当取最优值时,
和
正交,
构成一个直角三角形,
是斜边,
和
是直角边,
最小时
接近
维纳-霍夫方程
当取得最优解时,
的自相关函数定义为
与
的互相关函数定义为
上面的方程可以写为
是维纳滤波器的最优系数,上面的方程叫做维纳霍夫方程。
通过误差性能曲面推导最优解需满足的条件
上式成立的条件是抽头输入与期望响应
联合平稳,此时代价函数
是关于权系数
的二次函数
可以把看作是一个M阶的碗状曲面,对
求J的梯度向量可得
令得到维纳霍夫方程
维纳霍夫方程的矩阵形式求解
的自相关矩阵
工程上求解维纳霍夫方程不是直接求输入抽头自相关矩阵的逆矩阵,而是通过递归的方法求系数
参考《自适应滤波器原理》第五版 Simon Haykin著