树状数组优化DP

树状数组优化DP  

P1020导弹拦截  
本题要求出最长不升子序列和最长上升子序列的长度,
转移方程为 
$$f_i=\max_{j<i,a_j\ge a_i}f_j+1,g_i=\max_{j<i,a_j<a_i}f_j+1$$
 

 $$$ans1$$$ 就是 $$$\max\{f\}-1$$$, $$$ans2$$$ 就是 $$$\max\{g\}$$$ 。

好的,由于朴素DP时间为 $O(n^2)$,无法通过 $n=10^5$ 的测试点,这里就有了优化方法,
当然你也可以用二分,不过那样就没法知道具体内容了(二分代码文末给出 qwq

这里介绍 BIT 优化这个过程。每次我们要找出前面已经加入的比该数字小的数中函数值最大的,
由于 $a_i$ 值域很小,这里省去了离散化的过程 。可以用权值BIT解决此问题。
对于第一问,倒序枚举该数组,每次加入时 询问小于等于该数字的 最大值 ,再 $+1$,
更新 $ans1$,之后插入该数字到 $t_{a_i}$ 中(也可以称得上更新了) 

const int M=5e4;
struct BIT{
  int v[M+1];
  void add(int p,int x){
    for(;p<=M;p+=p&-p) v[p]=max(v[p],x);
  }
  int ask(int p){
    int ans=0;
    for(;p;p-=p&-p) ans=max(ans,v[p]);
    return ans;
  }
}t1,t2;
...
for(int i=n-1,f;~i;--i){
  t1.add(a[i],f=t1.ask(a[i])+1),ans1=max(ans1,f);
}


第二问则正序枚举即可,每次问小于该数字的最大值 
 

for(int i=0,f;i<n;++i){
  t2.add(a[i],f=t2.ask(a[i]-1)+1),ans2=max(ans2,f);
}

对于 最长不升子序列的划分数=`LIS` 的证明
假设 `LNIS` 的划分数 为 $a$ ,`LIS` 的长度为 $b$  
1. 由于 `LIS` 中的两个数满足 $x_1<x_2$,所以这两个数字不能划分在一个 `LNIS` 中,于是就有 $a>=b$
2. 设 `S[n]=` 以 $a$ 开头的 `LNIS` 长度为 $n$ 的 $a$ 的下标 构成的集合 ,共有 $S_1 \cdots S_n$ 这些。
比如,对序列 $\{1,4,2,5,6,3,2,5,7,3\}$, `LIS` = $\{1,2,3,5,7\}$ = $5$, `S[1]` = $\{1,7,10\}$, `S[2]` = $\{3,6,8,9\}$, `S[3]` = $\{2,4,5\},$ 
则可以发现,集合中的下标对应的元素是单调递增的,因为如果存在 `S[x[i]] >S[x[i+1]]` ,
则 $x_i$ 这个元素可以接在 $x_{i+1}$ 前,使得 以 $x_i$ 开头的 LNIS 长度变为 $x+1$,矛盾。 
于是就有 `S` 等价于 `LIS` 的结论。 (其实还是有疑问 qwq
***
参考代码:树状数组

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+1,M=5e4;
struct{
  int v[M+1];
  void add(int p,int x){
    for(;p<=M;p+=p&-p) v[p]=max(x,v[p]);
  } 
  int ask(int p){
    int ans=0;
    for(;p;p-=p&-p) ans=max(ans,v[p]);
    return ans;
  }
}t1,t2;
int a[N],n,ans1,ans2;
main(){
  //cin.tie(0)->sync_with_stdio(0);
  while(~scanf("%d",a+n))++n;
  for(int i=n-1,f;~i;--i)
    t1.add(a[i],f=t1.ask(a[i])+1),ans1=max(ans1,f);
  for(int i=0,f;i<n;++i)
    t2.add(a[i],f=t2.ask(a[i]-1)+1),ans2=max(ans2,f);
  cout<<ans1<<'\n'<<ans2;
}


参考代码:二分
 

//longest not increasing subsequence
//longest increasing subsequence
#include<bits/stdc++.h>
using namespace std;
int n,a[100001];
vector<int> lnis,lis;
#define pb push_back
main(){
  while(~scanf("%d",a+n))++n;
  lnis.pb(*a),lis.pb(*a);
  for(int i=1;i<n;++i){
    if(a[i]<=*lnis.rbegin()) lnis.pb(a[i]);
    else*upper_bound(lnis.begin(),lnis.end(),a[i],greater<int>())=a[i];
    if(a[i]>*lis.rbegin()) lis.pb(a[i]);
    else*lower_bound(lis.begin(),lis.end(),a[i])=a[i];
  }
  cout<<lnis.size()<<'\n'<<lis.size();
}

树状数组可以用来解决最长公共子序列问题。下面是使用树状数组优化的最长公共子序列求解算法。 首先,我们需要将两个序列分别离散化,将每个数映射到一个连续的整数区间内,然后将它们分别存储在两个数组中。 接着,我们定义一个二维数组`dp`,其中`dp[i][j]`表示序列1中前i个数和序列2中前j个数的最长公共子序列长度。则有以下状态转移方程: ```c if (a[i] == b[j]) dp[i][j] = dp[i-1][j-1] + 1; else dp[i][j] = max(dp[i-1][j], dp[i][j-1]); ``` 其中,`a`和`b`分别是两个离散化后的序列。 时间复杂度为O(n^2)。 然后,我们可以使用树状数组优化这个算法,将时间复杂度降至O(nlogn)。 我们需要定义一个树状数组`c`,其中`c[i]`表示序列1中前i个数中最后一个数在序列2中出现的位置。然后,我们可以用二分查找来找到序列1中第i个数在序列2中出现的最晚位置,即`c[i]`。 接着,我们可以通过遍历序列1中的每个数,用树状数组更新`c`数组,并根据`c`数组和状态转移方程来更新`dp`数组。 具体来说,对于序列1中的第i个数,我们可以用二分查找在序列2中找到它出现的最晚位置`pos`,然后用树状数组将`pos`更新为i。接着,我们可以遍历序列2中的每个数,如果它在序列1中出现过,则可以根据状态转移方程来更新`dp`数组。 时间复杂度为O(nlogn)。 以下是使用树状数组优化的最长公共子序列求解算法的完整代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_N 100000 int a[MAX_N + 10], b[MAX_N + 10]; int c[MAX_N + 10]; int dp[MAX_N + 10][2]; int n, m; int lowbit(int x) { return x & (-x); } void update(int x, int val) { while (x <= n) { c[x] = max(c[x], val); x += lowbit(x); } } int query(int x) { int res = 0; while (x) { res = max(res, c[x]); x -= lowbit(x); } return res; } int main() { scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 1; i <= m; i++) { scanf("%d", &b[i]); } // 离散化 int k = 1; for (int i = 1; i <= n; i++) { for (int j = k; j <= m; j++) { if (a[i] == b[j]) { a[i] = j; k = j + 1; break; } } } // 初始化 memset(c, 0, sizeof(c)); memset(dp, 0, sizeof(dp)); // 动态规划求解 for (int i = 1; i <= n; i++) { int pos = query(a[i]); dp[i][0] = dp[i-1][1]; dp[i][1] = dp[i-1][1]; if (pos > 0) { dp[i][1] = max(dp[i][1], dp[pos-1][0] + i - pos + 1); } update(a[i], i); } printf("%d\n", dp[n][1]); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值