工作记录------几种count耗时以及模糊查询耗时
背景:前端页面需要对用户姓名进行前模糊+后模糊的查询,但是查询结果特别慢。于是在网上简单查了几种SQL语句写法的改变,并试验各种写法的速度如何。
四种前后迷糊查询的方式:
- ‘columnName’ LIKE ‘%keyword%’
- LOCATE(‘keyword’,‘columnName’) >0
- POSITION(‘keyword’ IN ‘columnName’)
- INSTR(‘columnName’, ‘keyword’ ) >0
数据表背景:
正好试验下count几种方式的耗时如何。
首先这张用户表经过查询具有1298885条数据,也就是129万8千8百85条数据。算是初入百万级数据吧。
- SELECT count(*) FROM bus_customer_info; – --用时0.188s
- SELECT count(1) FROM bus_customer_info; --用时0.172s
- SELECT count(requestNo) FROM bus_customer_info; --用时0.172s
- SELECT count(liveDetailAddress) FROM bus_customer_info; --用时0.547s
- SELECT count(age) FROM bus_customer_info; --用时0.329s
其中count(※)、count(1)和count(requestNo)耗时差不多一致.以前好像在什么地方看到过MySQL在版本更新后count(※)、count(1)效率一致,并不存在现在以前说※效率比1效率低很多的情况了,而此处requestNo的字段具有索引,而liveDetailAddress、age这两个字段是非索引字段,其中liveDetailAddress居住地址可能由于字段内容的长度更长一些,耗时要比age年龄字段更长一些。
结论:*=1=索引>短字段>长字段
几种模糊查询用时比较
1.like '%keyword%'的写法
SELECT requestNo FROM bus_customer_info WHERE customerName LIKE ‘%志%’
– 耗时 0.547s 结果25682条 2万5千682条
2.LOCATE(‘志’,customerName
)的写法
SELECT requestNo from bus_customer_info WHERE LOCATE('志',`customerName`);
– 耗时0.781s
3.POSITION(‘志’ IN customerName
)写法
SELECT requestNo FROM
bus_customer_info
WHERE POSITION(‘志’ INcustomerName
);
– 耗时0.625s
4.INSTR(customerName
, ‘志’ )>0 写法
SELECT requestNo FROM
bus_customer_info
WHERE INSTR(customerName
, ‘志’ )>0;
–耗时0.797s
结论:根据测试发现,只从单SQL的角度来说反而“Like’”查询时间更短。
where 条件下的任何函数都会增加查询耗时。
因此需要优化时,从逻辑或者是分库分表等角度优化,单单从SQL的角度优化的可能性较小