工作记录------几种count耗时以及模糊查询耗时比较

工作记录------几种count耗时以及模糊查询耗时

背景:前端页面需要对用户姓名进行前模糊+后模糊的查询,但是查询结果特别慢。于是在网上简单查了几种SQL语句写法的改变,并试验各种写法的速度如何。

四种前后迷糊查询的方式:

  1. ‘columnName’ LIKE ‘%keyword%’
  2. LOCATE(‘keyword’,‘columnName’) >0
  3. POSITION(‘keyword’ IN ‘columnName’)
  4. INSTR(‘columnName’, ‘keyword’ ) >0

数据表背景:

正好试验下count几种方式的耗时如何。
首先这张用户表经过查询具有1298885条数据,也就是129万8千8百85条数据。算是初入百万级数据吧。

  • SELECT count(*) FROM bus_customer_info; – --用时0.188s
  • SELECT count(1) FROM bus_customer_info; --用时0.172s
  • SELECT count(requestNo) FROM bus_customer_info; --用时0.172s
  • SELECT count(liveDetailAddress) FROM bus_customer_info; --用时0.547s
  • SELECT count(age) FROM bus_customer_info; --用时0.329s
    其中count(※)、count(1)和count(requestNo)耗时差不多一致.以前好像在什么地方看到过MySQL在版本更新后count(※)、count(1)效率一致,并不存在现在以前说※效率比1效率低很多的情况了,而此处requestNo的字段具有索引,而liveDetailAddress、age这两个字段是非索引字段,其中liveDetailAddress居住地址可能由于字段内容的长度更长一些,耗时要比age年龄字段更长一些。
    结论:*=1=索引>短字段>长字段

几种模糊查询用时比较

1.like '%keyword%'的写法

SELECT requestNo FROM bus_customer_info WHERE customerName LIKE ‘%志%’

– 耗时 0.547s 结果25682条 2万5千682条

2.LOCATE(‘志’,customerName)的写法

SELECT requestNo from bus_customer_info WHERE  LOCATE('志',`customerName`);

– 耗时0.781s

3.POSITION(‘志’ IN customerName)写法

SELECT requestNo FROM bus_customer_info WHERE POSITION(‘志’ IN customerName);

– 耗时0.625s
4.INSTR(customerName, ‘志’ )>0 写法

SELECT requestNo FROM bus_customer_info WHERE INSTR(customerName, ‘志’ )>0;

–耗时0.797s

结论:根据测试发现,只从单SQL的角度来说反而“Like’”查询时间更短。
where 条件下的任何函数都会增加查询耗时。
因此需要优化时,从逻辑或者是分库分表等角度优化,单单从SQL的角度优化的可能性较小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值