矩阵分析期末总结

矩阵分析

1 线性空间与线性变换

1.1 向量

  1. 向量的定义:image-20220426090006069
    1. 分量
    2. 几何:既有方向又有大小,如把尾部拉到坐标系原点,则向量与坐标系中的点一一对应
  2. 向量的运算:
    1. 加法:a+b=image-20220426090203245
      • 几何:平行四边形法则
    2. 数乘:image-20220426090306152
      • 几何:向量的伸缩
    3. 其他运算:image-20220426090348538
  3. 向量空间:
    1. 对加法和数乘封闭:image-20220426090430348
    2. 向量张成的空间:image-20220426090541602
    3. 几何:image-20220426090607418

1.2 线性空间

  1. 定义:在向量空间的基础上,加法和数乘的结果唯一,且满足8条规则,则为线性空间:
    • 8条规则:image-20220426090812119
    • image-20220426090825942
  2. 性质:
    • image-20220426091003403
    • 线性相关:不全为0,image-20220426091047801
      • 线性无关
      • 充要条件:至少一个向量可由其他向量线性表示
      • 秩:r:r个线性无关,r+1个线性相关
      • 充要条件2:rank(a1,a2,……,am)<m
      • 极大线性无关组:秩为r,任意r个线性无关的向量

1.3 子空间

  1. 定义:W是V的子集,W关于V中加法数乘也是线性空间——W是子空间
    • 平凡子空间:V、image-20220426091621821
    • 非平凡子空间
    • 真子空间
  2. 性质:
    • 生成子空间:span{a1,a2,……,am}/L{a1,a2,……,am}:image-20220426091821818
      • a1,a2……,am可以由b1,b2,……bn线性表示,则image-20220426091942828
  3. 运算:
    1. 交:子空间的交也是子空间(子空间的并不是子空间)

    2. 和:子空间的和也是子空间:image-20220426172912233

    3. 直和:
      若 a 表 示 为 a 1 + a 2 , a 1 ∈ W 1 , a 2 ∈ W 2 的 方 式 唯 一 , 则 称 W 1 + W 2 为 直 和 , 记 为 W 1 ⊕ W 2 若a表示为a_1+a_2,a_1\in W_1,a_2\in W_2的方式唯一,则称W_1+W_2为直和,记为W_1\oplus W_2 aa1+a2,a1W1,a2W2W1+W2W1W2

      • 子空间的直和也是子空间

      • image-20220429230330563
      • 以 下 条 件 等 价 : ( 1 ) W 1 + W 2 是 直 和 ( 2 ) θ = a 1 + a 2 → a 1 = a 2 = θ ( 3 ) W 1 ∩ W 2 = { θ } 以下条件等价:\\ (1)W_1+W_2是直和\\ (2)\theta=a_1+a_2\rightarrow a_1=a_2=\theta\\ (3)W_1\cap W_2=\{\theta\} (1)W1+W2(2)θ=a1+a2a1=a2=θ(3)W1W2={θ}

1.4 基与维数

  1. 定义:a1,a2,……,am为V的一组基,m为维数,记为dim(V)

    1. a1,a2,……,am线性无关
    2. a1,a2,……,am,b线性相关
  2. 坐标
    a = x 1 a 1 + x 2 a 2 + ⋯ + x m a m 称 x 1 , x 2 , ⋯   , x m 是 元 素 a 在 基 a 1 , a 2 , ⋯   , a m 下 的 坐 标 a=x_1a_1+x_2a_2+\cdots+x_ma_m\\ 称x_1,x_2,\cdots,x_m是元素a在基a_1,a_2,\cdots,a_m下的坐标 a=x1a1+x2a2++xmamx1,x2,,xmaa1,a2,,am

  3. 性质
    设 V 是 m 维 线 性 空 间 , V 中 任 意 m 个 线 性 无 关 的 向 量 组 都 是 V 的 一 组 基 设V是m维线性空间,V中任意m个线性无关的向量组都是V的一组基 Vm线Vm线V

  4. 子空间交引定理
    d i m ( S 1 ∩ S 2 ) + d i m ( S 1 + S 2 ) = d i m ( S 1 ) + d i m ( S 2 ) dim(S_1\cap S_2)+dim(S_1+S_2)=dim(S_1)+dim(S_2) dim(S1S2)+dim(S1+S2)=dim(S1)+dim(S2)

    • 证 明 : 设 d i m ( S 1 ∩ S 2 ) = r , 则 取 S 1 ∩ S 2 的 一 组 基 a 1 , a 2 , ⋯   , a r , 并 将 之 扩 张 成 S 1 的 基 a 1 , ⋯   , a r , a r + 1 , ⋯   , a r + s 和 S 2 的 基 a 1 , ⋯   , a r , b r + 1 , ⋯   , b r + t 对 于 S 1 + S 2 , 设 λ 1 a 1 + ⋯ + λ r a r + μ 1 a r + 1 + ⋯ + μ s a r + s + κ 1 b r + 1 + ⋯ + κ t b r + t = θ 可 得 λ 1 a 1 + ⋯ + λ r a r + μ 1 a r + 1 + ⋯ + μ s a r + s = − ( κ 1 b r + 1 + ⋯ + κ t b r + t ) = v 所 以 v ∈ S 1 ∩ S 2 , v = σ 1 a 1 + ⋯ + σ r a r 所 以 σ 1 a 1 + ⋯ + σ r a r + κ 1 b r + 1 + ⋯ + κ t b r + t = θ 所 以 σ 1 = ⋯ = σ r = κ 1 = ⋯ = κ t = 0 所 以 λ 1 = ⋯ = λ r = μ 1 = ⋯ = μ s = 0 所 以 a 1 , ⋯   , a r , a r + 1 , ⋯   , a r + s , b r + 1 , ⋯   , b r + t 线 性 无 关 , 所 以 d i m ( S 1 + S 2 ) = r + s + t 证明:\\ 设dim(S_1\cap S_2)=r,则取S_1\cap S_2的一组基a_1,a_2,\cdots,a_r,并将之扩张成S_1的基a_1,\cdots,a_r,a_{r+1},\cdots,a_{r+s}\\ 和S_2的基a_1,\cdots,a_r,b_{r+1},\cdots,b_{r+t}\\ 对于S_1+S_2,设\\ \lambda_1a_1+\cdots+\lambda_ra_r+\mu_1a_{r+1}+\cdots+\mu_sa_{r+s}+\kappa_1b_{r+1}+\cdots+\kappa_tb_{r+t}=\theta\\ 可得\lambda_1a_1+\cdots+\lambda_ra_r+\mu_1a_{r+1}+\cdots+\mu_sa_{r+s}=-(\kappa_1b_{r+1}+\cdots+\kappa_tb_{r+t})=v\\ 所以v\in S_1\cap S_2,v=\sigma_1a_1+\cdots+\sigma_ra_r\\ 所以\sigma_1a_1+\cdots+\sigma_ra_r+\kappa_1b_{r+1}+\cdots+\kappa_tb_{r+t}=\theta\\ 所以\sigma_1=\cdots=\sigma_r=\kappa_1=\cdots=\kappa_t=0\\ 所以\lambda_1=\cdots=\lambda_r=\mu_1=\cdots=\mu_s=0\\ 所以a_1,\cdots,a_r,a_{r+1},\cdots,a_{r+s},b_{r+1},\cdots,b_{r+t}线性无关,所以dim(S_1+S_2)=r+s+t dim(S1S2)=rS1S2a1,a2,,arS1a1,,ar,ar+1,,ar+sS2a1,,ar,br+1,,br+tS1+S2λ1a1++λrar+μ1ar+1++μsar+s+κ1br+1++κtbr+t=θλ1a1++λrar+μ1ar+1++μsar+s=(κ1br+1++κtbr+t)=vvS1S2v=σ1a1++σrarσ1a1++σrar+κ1br+1++κtbr+t=θσ1==σr=κ1==κt=0λ1==λr=μ1==μs=0a1,,ar,ar+1,,ar+s,br+1,,br+t线dim(S1+S2)=r+s+t

1.5 线性变换

  1. 映射定义:
    指 定 规 则 f , 对 于 A 中 每 一 个 元 素 x , B 中 都 有 唯 一 元 素 y 与 之 对 应 , 则 f 为 从 A 到 B 的 一 个 映 射 , 记 为 f : A → B 指定规则f,对于A中每一个元素x,B中都有唯一元素y与之对应,\\ 则f为从A到B的一个映射,记为f:A\rightarrow B fAxByfABf:AB

  2. 线性变换定义:
    f ( A + B ) = f ( A ) + f ( B ) λ f ( A ) = f ( λ A ) 则 称 f 是 V 的 一 个 线 性 变 换 f(A+B)=f(A)+f(B)\\ \lambda f(A)=f(\lambda A)\\ 则称f是V的一个线性变换 f(A+B)=f(A)+f(B)λf(A)=f(λA)fV线

  3. 性质:image-20220427160209456

  4. 几何意义:把线变成线

  5. 运算:

    1. 乘积:image-20220427160316856
    2. 和:image-20220427160359147
    3. 数乘:image-20220427160413576
  6. 值域与核:

    1. 像空间:(值域)image-20220427161156508
    2. image-20220427161217901
    3. 定理:像空间与核都是子空间
    4. 定理:image-20220427161428436

1.6 矩阵

  1. 定义:矩阵就是变换image-20220427162035964
    • 形式上:mn个数
  2. 几何意义:把一个n维线性空间中的向量映射为(另)一个m维线性空间中的向量
  3. 运算:
    1. 转置
    2. 共轭转置
    3. 秩(行秩等于列秩)
    4. 行列式(方阵):
      • 几何意义:变换后体积的缩放因子
    5. 特征值与特征向量image-20220427162508628
      • 几何意义:把向量变为同维数向量的时候,只发生了伸缩
  4. 酉矩阵与实正交矩阵image-20220427162640232
  5. 其他形式的矩阵image-20220427162711845

矩阵分解

2.1 QR分解

  1. 定义:正交矩阵x上三角矩阵:image-20220428191702206
  2. 定理:QR分解总是存在:image-20220428192043019
  3. 意义:Gram–Schmidt正交化作用到矩阵列向量的分解形式:
    1. 求b:image-20220428192133458
    2. 反向:image-20220428192215191
    3. 矩阵:image-20220428192253855
  4. 几何意义:采用Householder变换依次将列向量转换为指定上三角形式:
    1. Householder变换:image-20220428192551762
    2. image-20220428192610495
    3. 转换为上三角:
      • image-20220428192643208image-20220428194210451image-20220428194223421
  5. 用途:最小二乘image-20220428194734843image-20220428194756183
  6. Householder与Givens矩阵:
    1. 定理image-20220428231117363
      • 推论:image-20220428232820700
    2. Givens矩阵:
      1. 定义:image-20220428232852227
      2. 性质:image-20220429114828811
      3. 定理:image-20220429114900284
      4. 几何意义:在两个坐标确定平面内旋转到单位向量

2.2 奇异值分解

  1. 定义:奇异值分解是特征值及特征向量分解在任意矩阵的推广:
    1. image-20220429115159588
    2. image-20220429115217943
    3. U、V是酉矩阵
  2. 意义:
    1. 代数意义:一般矩阵的特征分解:image-20220429115421845
    2. 几何意义:将正交的向量组变换到另外正交的向量组:image-20220429115523350
  3. 计算:
    • image-20220429115948176
    • image-20220429120000897
  4. 用途:图像压缩、去噪

2.3 极分解

  1. 定义:image-20220429120332159
  2. 本质:image-20220429122407629
  3. 几何意义:image-20220429122445751
  4. 用途:极分解得到的酉矩阵是和原矩阵“最接近”的正交矩阵

2.4 Cholesky分解

  1. 定义:
    • image-20220429123849735
    • image-20220429123902549

2.5 谱分解

2.6 CS分解

2.7 其他分解

矩阵标准形

3.1 矩阵相似

  1. 定义:image-20220429202045956

    • 酉相似:S=U
  2. 代数意义:相似矩阵A和B是同一个线性变换在两个不同基下的表示矩阵,同一个线性变换在不同基下的矩阵是相似矩阵

  3. 几何意义:image-20220429202221942

  4. 对角化:与对角矩阵相似

    • 可对角化充要条件:有n个线性无关的特征向量
    • 可同时对角化:image-20220429230031332
  5. 定理:

    • image-20220429224343232
    • image-20220429225828795
  6. 用途:image-20220429230122040

3.2 Jordan标准形

  1. Jordan块定义:image-20220429230228037
    • Jordan矩阵定义:image-20220429230307393
  2. 定理:每个矩阵都与一个本质上唯一的Jordan矩阵相似
    1. Jordan块的个数k就是J的线性无关的特征向量的最大个数
    2. Jordan标准型的对角元素λ1, λ2,…, λk就是A的特征值
    3. 矩阵J可以对角化,当且仅当k=n,即所有Jordan块都是1×1

3.3 极小多项式

  1. 矩阵的多项式:image-20220429230737103
  2. 零化多项式:p(A)=O
    • image-20220429230914627
  3. 极小多项式:
    1. image-20220429232701184
    2. image-20220429233118886
    3. 求法:特征多项式降次数

矩阵范数

4.1 向量范数

  1. 定义:
    ∥ ⋅ ∥ \|·\|

    • image-20220427164839185
    • 例子:image-20220427164913897
  2. 意义:反映大小或距离的函数,用于比较不同的向量

    • 向量2范数:向量的长度
    • image-20220427165039054
  3. 性质:

    • image-20220427165406026
    • 范数等价:Fn上的所有向量范数等价
      • 定义:image-20220427165507159
    • 正交变换不改变向量的2范数

4.2 方阵范数

  1. 定义:image-20220428095145300
  2. 例子image-20220428095219029
  3. 意义:比较不同矩阵的差异大小:image-20220428095449849
  4. 性质:
    1. F范数等于image-20220428095703674
    2. F范数酉不变性image-20220428095732665
    3. 单位矩阵(可以推出来):image-20220428095849829

4.3 一般矩阵范数

  1. 向量范数和方阵范数相容性image-20220428175149552

    • 定理:矩阵范数必有向量范数与之相容
  2. 从属范数

    1. 定义:image-20220428175403504
    2. 定理:image-20220428180759283
  3. 常用的矩阵范数

    • image-20220428180903093
    • image-20220428180930399
    • image-20220428182608098

4.4 矩阵的谱半径

  1. 定义:方阵的最大特征值:image-20220428182745789
  2. 性质:image-20220428183004604
  3. 定理image-20220428183051982
    • 意义:谱半径是矩阵的任意一种范数的下界
    • 定理:image-20220428183222642

4.5 矩阵的条件数

  1. 定义:image-20220428183334501
    • 常用条件数:image-20220428183437340
  2. 性质:image-20220428183520612
  3. 用途:线性方程的稳定性:image-20220428184805728

矩阵函数

5.1 矩阵序列

  1. 极限image-20220426092238937
  • 收敛:

k → ∞ , A ( k ) → A k\rightarrow \infty, A^{(k)}\rightarrow A k,A(k)A

  • 收敛矩阵

k → ∞ , A k → 0 k\rightarrow \infty, A^k \rightarrow0 k,Ak0

  • 极限的充要条件image-20220426093409963

  • image-20220426095125153,则image-20220426095138253(逆命题不成立)

  1. 性质:

    1. image-20220426095757511
    2. A为收敛矩阵的充要条件:(谱半径小于1)
      ρ ( A ) < 1 \rho(A)<1 ρ(A)<1

      • 推论:若image-20220426100316049image-20220426100326708

5.2 矩阵级数

  1. 定义:无穷和:image-20220426152127671

  2. 部分和:image-20220426152212224

    • 定理:若部分和收敛,image-20220426152254767,则矩阵级数收敛,且image-20220426152325548
  3. 绝对收敛:若mn个数项级数都绝对收敛,即image-20220426153033758都收敛,则称矩阵级数image-20220426153103651绝对收敛

    • 矩阵级数绝对收敛的充要条件image-20220426153458412收敛
  4. 幂级数:

    1. 定义:image-20220426153636321

    2. 例子:image-20220426153650805

    3. 绝对收敛
      设 纯 量 幂 级 数 的 收 敛 半 径 为 R , 且 ρ ( A ) < R , 则 矩 阵 幂 级 数 绝 对 收 敛 设纯量幂级数的收敛半径为R,且\rho(A)<R,则矩阵幂级数绝对收敛 Rρ(A)<R

      • 推论
        ∣ ∣ A ∣ ∣ < R , 矩 阵 幂 级 数 收 敛 ||A||<R,矩阵幂级数收敛 A<R
    4. 性质
      ρ ( A ) = lim ⁡ k → ∞ ∣ ∣ A k ∣ ∣ 1 / k \rho(A)=\lim_{k\rightarrow\infty}{||A^k||^{1/k}} ρ(A)=klimAk1/k

    5. 性质
      A 非 奇 异 , 且 ∣ ∣ I − A ∣ ∣ < 1 , 则 A − 1 = ∑ k = 0 ∞ ( I − A ) k A非奇异,且||I-A||<1,则A^{-1}=\sum_{k=0}^{\infty}(I-A)^{k} AIA<1A1=k=0(IA)k

5.3 常见矩阵函数

  1. 矩阵函数f(A)定义:
    若 f ( z ) = ∑ k = 0 + ∞ α k z k , ( ∣ z ∣ < r ) , 且 ρ ( A ) < r , 则 f ( A ) = ∑ k = 0 + ∞ α k A k 若f(z)=\sum_{k=0}^{+\infty}\alpha_{k}z^k,(|z|<r),且\rho(A)<r,则f(A)=\sum_{k=0}^{+\infty}\alpha_{k}A^k f(z)=k=0+αkzk,(z<r),ρ(A)<r,f(A)=k=0+αkAk

  2. 纯量幂级数与矩阵函数的对应

    • image-20220426161101678
  3. 性质

    • image-20220426161334839
    • image-20220426161352697
    • image-20220426161447046
  4. 用途:旋转变换:image-20220426161744815

5.4 矩阵微积分

  1. 定义:image-20220428184939325
  2. 微分运算法则:image-20220428185328701image-20220428185340188
  3. 微分运算法则:image-20220428190754256image-20220428190807992
  4. 矩阵作变量的微积分:image-20220428191115639
  5. 用途:最小二乘:
    • 最小二乘解:image-20220428191256232
    • 法方程组:image-20220428191315539

5.5 广义逆矩阵

  1. 可逆:image-20220428221521378
  2. 推广:广义逆:image-20220428221558131image-20220428225128367
  3. 定理:广义逆存在且唯一
  4. Moore-Penrose广义逆:image-20220428225408896
  5. 性质:image-20220428230808121

r-images\image-20220428225128367.png" alt=“image-20220428225128367” style=“zoom:33%;” />
3. 定理:广义逆存在且唯一
4. Moore-Penrose广义逆:image-20220428225408896
5. 性质:image-20220428230808121
6.

5.6 广义特征值

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值