数值分析期末总结二

四、雅可比迭代补充:
1、在这里插入图片描述
写出雅可比迭代矩阵:
在这里插入图片描述
求解:Bj = E - D(-1)*fj
A:就是原方程组的系数
D:就是对角线元素所构成的对角矩阵
在这里插入图片描述

D(-1):D的逆矩阵等于对角元素的倒数
在这里插入图片描述

fj:等号右边的数
在这里插入图片描述
所以求得::Bj = E - D(-1)*fj
在这里插入图片描述
在这里插入图片描述
补充:求逆矩阵方法:
1、伴随矩阵:
A的逆矩阵=A行列式的值的倒数 再乘上 A的伴随矩阵=1/|A| * A的伴随矩阵
|A|=三乘+三乘+三乘—三乘—三乘—三乘
A的伴随矩阵(记得转置,记得每个数前的正负号)=
第一列:A11,A12,A13
第二列:A21,A22,A23
第三列:A31,A32,A33
2、初等行列变换:阶梯形,1
[A|E]经过初等行列变换得到[E|A的逆矩阵]

五、向量范数:
1、向量一范数:所有元素的模值之和
(考虑到复数)比如:x= 1+i,||x||1= 根号(2),开根号(实部1平方+虚部1平方)。
2、向量二范数:元素的模值平方和开根号(先各自平方,然后相加,最后开根号)。
3、向量无穷范数:最大模值的元素。
4、例题:
(1)1-i的模值是:开根号(1+1)=根号2,
2的模值还是2
所以向量一范数:2+根号2
(2)因为选取最大模值(2>根号2),所以向量无穷范数:2
在这里插入图片描述
5、矩阵一范数:
所有元素的模值之和
6、矩阵二范数:
所有元素的模值平方和开根号
7、矩阵无穷范数:
矩阵的最大模值
8、例题:
下面矩阵有四个元素,模值为根号2,2,0,3,得到A矩阵无穷范数为:3
在这里插入图片描述
9、算子范数
共轭转置
在这里插入图片描述

(1)算子2范数:如果矩阵有复数,先取共轭,然后进行转置,然后求解最大特征值然后的模值,再开根号
(2)算子1范数(列和极大范数):对矩阵A的每一列的模值先进行求和,然后最大的作为结果
(3)算子无穷范数(行和极大范数):对矩阵A的每一行的模值先进行求和,然后最大的作为结果
在这里插入图片描述
10、谱半径:
(1)概念:一个矩阵的谱半径为它最大特征值的模值
(2)特点:
谱半径小于等于任何算子范数
r(A)<=||A||
特征值的模值小于等于算子范数
|特征值|<=||A||
11、例题:
行和极大范数:因为3<2+根号2,所以是2+根号2
谱半径:因为A是下三角为0的对角矩阵,所以特征值是对角元素:1+i和3,选取最大的模值所以为3
在这里插入图片描述
12、应用:判断一个矩阵是否收敛方法:
定理:矩阵A为收敛矩阵的充分必要条件是r(A) < 1
13、补充:求解特征值v
构造|vE-A|,直接求解
在这里插入图片描述
得:
在这里插入图片描述
解法二:分解A第一行:正负*系数 乘上矩阵
在这里插入图片描述
在这里插入图片描述

五、高斯赛德迭代补充:在这里插入图片描述
1、迭代矩阵的求解:
在这里插入图片描述
Bg-s=(D-L)的逆矩阵*U
已知A矩阵:全为原方程组左边的系数
D:为对角线元素(其余为0)
L:为下三角取反(其余为0)
U:为上三角取反(其余为0)
fg-s:方程组右边的值
六、高斯赛德与雅可比迭代都收敛的判断方法:
1、迭代矩阵B的谱半径p(B)都小于1
2、因为谱半径都是小于等于算子范数
3、可以转化为:算子范数 max(即可以看行和范数)< 1
在这里插入图片描述
例题:
在这里插入图片描述
算子范数max=0.2+0.1=0.3<1
七、拉格朗日插值
给出x0到xn,有n+1个节点,求n次多项式Pn(x)
1、两点拉格朗日插值:
在这里插入图片描述
2、三点拉格朗日插值:
在这里插入图片描述
3、插值余项:
Rn(x)=f(x)-Ln(x)=(n+1)阶乘分之f的(n+1)阶的倒数,在克赛处的取值 * Wn+1(x)
在这里插入图片描述
八、幂法
1、幂法:用于求解矩阵按模最大的特征值与相应的特征向量的近似值用于求解大规模稀疏矩阵的最大特征值
2、有一个要求的求解矩阵A乘上初始向量x(0),然后左边不断乘A乘A乘A…即可收敛到x(k)
3、x(k+1)/X(K)收敛到v1,这里是向量除法,也就是x(k+1)、x(k)对应位置元素相除,然后取平均
在这里插入图片描述
在这里插入图片描述
4、例题:
在这里插入图片描述

对应位置相处,然后求平均
5、采用标准化:
在这里插入图片描述
比如有x(0)向量:(1,2)要除以模最大数的2,则要变为(1/2,1),然后用它在进行左乘A,后面步骤也是这样,找到最大模,并除以它
例题:
在这里插入图片描述
加速法:原来的矩阵A-一个数p乘上单位矩阵E(或者I)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

九、拉格朗日插值补充:
1、在这里插入图片描述
在这里插入图片描述
最后把个各自基函数与对应的函数值相乘,再相加
在这里插入图片描述
余项:
在这里插入图片描述
例题:
在这里插入图片描述
十、牛顿插值
1、第一种牛顿插值的构造步骤:
给定函数f(x)在一系列点xi处的函数值f(xi),写出均差表
在这里插入图片描述
一阶均差:(等于左边的数-左上角的数)/(左边对应的x减去左边往上数1的数)
二阶均差:(等于左边的数-左上角的数)/(左边对应的x减去左边往上数2的数)
三阶均差:(等于左边的数-左上角的数)/(左边对应的x减去左边往上数3的数)
几阶均差:(等于左边的数-左上角的数)/(左边对应的x减去左边往上数几的数)
题目要求求出n次多项式,那么就要构造n阶均差
2、构造出的牛顿插值多项式:
等于f(x0)+f(x0,x1)(x-x0)+f(x0,x1,x2)(x-x0)(x-x1)+f(x0,x1,x2,x3)(x-x0)(x-x1)(x-x2)+…+f(x0,x1,x2…xn)(x-x0)(x-x1)(x-x2)…( x-x(n-1))
在这里插入图片描述
W(n+1)(x)=(x-x0)(x-x1)…(x-xn)
f[x0,x1,x2,x3…x(n+1)]:要算到n+1次均差(如果求余项,就多算一阶均差)
所以:余项Rn(x)=f[x0,x1,x2,x3…x(n+1)]*W(n+1)(x)
3、例题
在这里插入图片描述
在这里插入图片描述
其中:由于W(n+1)(x)=(x-x0)(x-x1)…(x-xn),得:W(n+1)(0.596)=(0.596-x0)(0.596-x1)…(0.596-x4)(这里的n=4)
f[x0,x1,x2,x3,x4,x5]=-0.00012
所以:
在这里插入图片描述
十一、埃尔米特插值
1、情况一
给出了一个f(x)在某一点的一阶导数f’(x)值
在这里插入图片描述
解题步骤:以为告诉了某一点的函数值与一阶导数值,所以在构造中,x取值那一列要写两次,而函数值f(x)那一列是多少就写多少(这里都是2,2),再求一节均差时,当x=1与x=1相减做分母时,这里直接填写x=1时的一阶导数值,其他的该怎么求就怎么求
在这里插入图片描述
该怎么求就怎么求,得出:在这里插入图片描述
埃尔米特插值余项与拉格朗日余是一样的
在这里插入图片描述
2、情况二
给出了一个f(x)在某两点的一阶导数f’(x)的两个值
在这里插入图片描述
谁有导数值,x取值就写两遍
在这里插入图片描述
解得:
在这里插入图片描述
在这里插入图片描述
十二、解线性方程组的直接解法
1、高斯消去法(变成三角形)
选取第一列绝对值最大的放第一行
消去该列下面的,
在这里插入图片描述
2、杜利特尔解法
(1)把A矩阵分解成一个对角都是1的下三角矩阵L与上三角矩阵U相乘
A=LU,由原来的Ax=b,得LUx=b,令Ux=y,
所以先求Ly=b,得y,然后求y=Ux,得x
在这里插入图片描述
(2)D1,D2,D3…(1阶,2阶,3阶行列式…)都不等于0,就可以分解
在这里插入图片描述
如何分解:
假设由LU=A
通过L的第一行求得U的第一行,通过U的第一列求得L的第一列

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
十三、反幂法
1、假设矩阵A有特征值v1,v2…vn,将这些特征值由大到小排序,取模最大的v1
反幂法是求A的逆矩阵:
在这里插入图片描述
2、用反幂法可以求出A最小的特征值, 用幂法可以求出A最大的特征值
3、在这里插入图片描述
4、例题:
在这里插入图片描述
在这里插入图片描述

  • 26
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值