极大似然估计

概率与似然

引用维基百科上对概率与似然的描述

  • 在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性
  • 在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。

以上这段话就概括得还是挺抽象了,"概率"和"似然"其实是从不同的角度去看待事件发生的可能性。以抛一枚硬币为例子(随机变量是离散型),样本空间 Ω = { 正 , 反 } \Omega =\lbrace 正,反 \rbrace Ω={,}、对于随机变量 X X X,当 w = w= w="正"时,观察值 x 1 = X = 1 x_1=X=1 x1=X=1;当 w = w= w="反"时有观察值 x 2 = X = 0 x_2=X=0 x2=X=0 θ = { 均质 , 非均质 } \theta=\lbrace 均质,非均质 \rbrace θ={均质,非均质},有以下分布律(叫概率函数更容易理解吧)
P ( x i ; θ ) P(x_i;θ) P(xi;θ)
P ( x i ; θ ) P(x_i;θ) P(xi;θ)是函数模型, x i x_i xi表示一个具体的样本观察值; θ θ θ表示模型的参数。

  • 如果 θ θ θ是已知确定的(均质), x i x_i xi是变量,这个函数叫做概率函数(probability function),它描述对于出现出面还是反面,其出现的可能性(概率)是多少。
  • 如果 x i x_i xi是已知确定的(正面向上), θ θ θ是变量(未确定硬币的质量分布,不同的分布可能导致硬币更容易正面向上或反面向上),这个函数叫做似然函数(likelihood function), 它描述对于不同的质量分布,出现下面向上这种情况可能性(似然)是多少。

概率是给定某一参数值,求某一结果的可能性; 似然是给定某一结果,求某一参数值的可能性。

似然函数

似然函数是一种关于统计模型中的参数的函数,分别就总体 ξ \xi ξ是离散型分布以及连续型分布的情况说明似然函数的形式,设 x 1 , x 2 . . . . . . x n x_1,x_2......x_n x1,x2......xn是取自总体 ξ \xi ξ的一个样本

设总体 ξ \xi ξ为离散型分布,其分布律为
P ( ξ = x i ) = p ( x i ; θ ) ( i = 1 , 2 , 3 , . . . , n ) P(\xi=x_i)=p(x_i;\theta) \quad (i=1,2,3,...,n) P(ξ=xi)=p(xi;θ)(i=1,2,3,...,n)
其中 θ \theta θ为未知参数,对给定的样本观察值 x 1 , x 2 . . . . . . x n x_1,x_2......x_n x1,x2......xn,令
L ( x 1 , x 2 , . . . , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) i ≥ 1 L(x_1,x_2,...,x_n;\theta)=\prod_{i=1}^np(x_i;\theta) \quad i \ge 1 L(x1,x2,...,xn;θ)=i=1np(xi;θ)i1

若总体为连续分布,其密度函数为 f ( x ; θ ) f(x;\theta) f(x;θ),其中 θ \theta θ为未知参数,对给定的样本观察值 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn(已发生的,确定的),令
L ( x 1 , x 2 , . . . , x n ; θ ) = ∏ i = 1 n f ( x i ; θ ) i ≥ 1 L(x_1,x_2,...,x_n;\theta)=\prod_{i=1}^nf(x_i;\theta) \quad i \ge 1 L(x1,x2,...,xn;θ)=i=1nf(xi;θ)i1

可以看出,似然函数 ( x 1 , x 2 , . . . , x n ; θ ) (x_1,x_2,...,x_n;\theta) (x1,x2,...,xn;θ)是未知参数 θ \theta θ的函数,它反映了对给定的样本观察值被取到的可能性(对于不同的 θ \theta θ被取到的可能性不同),我们所关注的是,什么情况下最有可能取到,当似然函数值最大的时候表示可能性达到最大,此时也会对应得到一个具体的参数 θ \theta θ,如果用 θ ^ \hat \theta θ^表示,那么就称 θ ^ \hat \theta θ^ θ \theta θ最大似然估计,即
L ( x 1 , x 2 , . . . , x n ; θ ^ ) = m a x L ( x 1 , x 2 , . . . , x n ; θ ) L(x_1,x_2,...,x_n;\hat \theta)=maxL(x_1,x_2,...,x_n;\theta) L(x1,x2,...,xn;θ^)=maxL(x1,x2,...,xn;θ)

最大似然估计是根据已知的样本的结果,反向推测最有可能得到这样结果的模型的参数值。

了解了最大似然估计的意义,下面就是求最大值的数学问题,一般通过求导数来解。

实例计算

首先来约定一个表达式 d − > P x ( 0 < x < 1 ) d−>P_x(0<x<1) d>Px(0<x<1),它表示:硬币质量分布为 d d d时,此时随机抛一次得到正面向上的概率 p = x p=x p=x

如果我们知道硬币是均质的( d − > P 0.5 d->P_{0.5} d>P0.5),那么"抛10次得到6次正面向上"的概率约为0.205

问题:如果在不知道硬币的质量分布 θ \theta θ的情况下进行了10次试验,最终也是得到6次正面向上的结果(1,0,1,1,0,0,0,1,1,1),那么能不能得到硬币的质量分布最可能是怎么样的???

1.找到分布律

抛硬币试验服从二项分布,总体可以看成无限大(无穷无尽地抛下去),质量分布未知时,出现正面向上的概率为p,则反面向上的概率为1-p,出现下面向上的次数 ξ \xi ξ是二项分布随机变量,其它取值可能是:0,1,2,…,k,…,n;有如下分布律
P ( ξ = k ) = C n k p k ( 1 − p ) n − k P(\xi=k)=C_n^kp^k(1-p)^{n-k} P(ξ=k)=Cnkpk(1p)nk
其中n表示抛n次,k表示得到k次正面向上

2.写出似然函数
L ( 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 1 ; θ ) = P ( ξ = 6 ) = C 10 6 p 6 ( 1 − p ) 4 L(1,0,1,1,0,0,0,1,1,1;\theta)=P(\xi=6)=C_{10}^6p^6(1-p)^4 L(1,0,1,1,0,0,0,1,1,1;θ)=P(ξ=6)=C106p6(1p)4

3.求导数
对上式取对数得到对似然方程
l n L ( 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 1 ; θ ) = l n C 10 6 + 6 l n p + 4 l n ( 1 − p ) lnL(1,0,1,1,0,0,0,1,1,1;\theta)=lnC_{10}^6+6lnp+4ln(1-p) lnL(1,0,1,1,0,0,0,1,1,1;θ)=lnC106+6lnp+4ln(1p)
再对p进行求导
d l n L d p = 6 p − 4 1 − p = 0 \frac{dlnL}{dp}=\frac{6}{p}-\frac{4}{1-p}=0 dpdlnL=p61p4=0
解得 p = 0.6 p=0.6 p=0.6,它的意思是,硬币的质量分布为 d − > P 0.6 d->P_{0.6} d>P0.6时,最有可能出现“抛10次得到6次正面向上”这种结果

如果不使用最大似然估计的解法,把各种质量分布情况下得到“抛10次得到6次正面向上”这种结果的可能性列举出来,可以看到 d − > P 0.6 d->P_{0.6} d>P0.6时最有可能,而出现这种结果且硬币是匀质( d − > P 0.5 d−>P_{0.5} d>P0.5)的可能性为0.205078125

质量分布抛10次得到6次正面向上的概率
d − > P 0.1 d−>P_{0.1} d>P0.10.000137781
d − > P 0.2 d−>P_{0.2} d>P0.20.005505024
d − > P 0.3 d−>P_{0.3} d>P0.30.0367569
d − > P 0.4 d−>P_{0.4} d>P0.40.111476736
d − > P 0.5 d−>P_{0.5} d>P0.50.205078125
d − > P 0.6 d−>P_{0.6} d>P0.60.250822655
d − > P 0.7 d−>P_{0.7} d>P0.70.200120949
d − > P 0.8 d−>P_{0.8} d>P0.80.088080383
d − > P 0.9 d−>P_{0.9} d>P0.90.011160260

参考

1.《概率论与数理统计》 郝志峰 谢国瑞 汪国强
2. 概率(probability)、似然(likelihood)、极大似然法:http://blog.sina.com.cn/s/blog_e8ef033d0101oa4k.html)
3. 似然(likelihood)与概率(probability)的区别:http://yangfangs.github.io/2018/04/06/the-different-of-likelihood-and-probability/

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
极大似然估计(Maximum Likelihood Estimation,简称MLE)是统计学中一种参数估计方法,指寻找最有可能(最大概率)解释已观察到的数据的参数值。USTC是中国科学技术大学的简称。 在USTC中,极大似然估计是统计学和概率论中的基础概念和方法之一。它被广泛应用于各个学科的研究和实践中,特别是与数据分析、模型拟合、测试假设等相关的领域。 极大似然估计的基本思想是,根据已观察到的数据,通过估计参数的取值,使得生成这些数据的概率最大化。通常需要假设数据服从某个概率分布,并且已有的观测数据是独立同分布的。 在实际应用中,极大似然估计方法有很多具体的步骤和技巧。一般来说,首先需要建立概率模型,并假设参数的取值空间。然后,利用已观测到的数据,计算参数取值下数据发生的概率,即似然函数。接下来,通过对似然函数进行最大化的优化,得到估计的参数值。最后,通过对参数的估计值进行验证和推断,对模型的有效性和可靠性进行评估。 USTC作为一所综合性、研究型、世界一流的大学,极大似然估计作为统计学中的重要概念和方法,也在该校的相关学科教学和研究中得到广泛应用。通过学习和掌握极大似然估计,USTC的学生能够在未来的研究、数据分析和决策过程中,更好地处理和利用观测到的数据,提高模型的精确性和可靠性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值