1-1 方法一:
设
∠DAC=∠DCA=
∠
D
A
C
=
∠
D
C
A
=
β
β
, AD=DC=1, 由角度几何关系得到
∠ABC=
∠
A
B
C
=
β
β
+
5∘
5
∘
由正弦定理得到:
ACsin(
β
β
+
5∘
5
∘
)=AB/sin(
30∘
30
∘
)
AD/sin(
30∘
30
∘
)=AB/sin(
25∘
25
∘
)
得到方程
4sin(
25∘
25
∘
)sin(
β
β
+
25∘
25
∘
)=sin(
2β
2
β
)/sin(
β
β
)
求解得到
β=40∘
β
=
40
∘
∴
∴
∠
∠
BDC=75
∘
∘
2-1 方法二:
3-1 两种方法得出相同的结果,下面我利用SolidWorks绘图软件进行约束求解,进行验证
可以看出从
C1到C2,∠ACB
C
1
到
C
2
,
∠
A
C
B
角度逐渐变小, 故存在唯一确定解
趣味数学
最新推荐文章于 2023-04-10 17:26:59 发布