最近在看《什么是数学》,在看到第六章证明单调序列有界必有极限的证明时,发现还有另一种证明方法,需要了解戴德金分化的知识,所以又在图书馆找到了《数学分析原理》教材,学习戴德金分化知识。
1.前言
中学教材中我们已经掌握有理数及其性质,由于初等数学的需要,有理数域的扩张成为必要。另一方面,我们举例
2√
, 没有一个其平方能等于2的有理分数
pq
(
p
与
利用反证法
∵
∃
pq
,
p,q
互质,
(pq)2=2
∴
p2
=
2q2
∴
p
为偶数,
∴
q2
=
2r2
, 推知
q
为偶数, 这与之前
2.有理数分割
考虑把全部有理数的集合分成两个非空的集合
A
,
(1)每一个有理数在且只在
A
与
(2)集合
A
中的每一数
满足上面两个条件的分法称为分割,集合
A
叫做分割的下类,集合
推论:
a) 凡小于下类中的数
a
的有理数,也属于下类
b) 凡大于上类
分割的类型举例
1)把
A
定义为所有一切满足不等式
结论:
a) 数
1
属于上类
b)
1
是其中最小的数
c) 下类
性质c)证明,假设下类
A
中存在最大的数
a0
∈
A
我们总能在
a0
与
1
之间找到一个有理数
a1>
1
且
这与
2)把
结论:
a) 数
1
属于下类
b)
1
是其中最大的数
c) 上类
前两类分割由有理数
r
产生,在这两类分割中
3.无理数定义
3) 把使
a2<2
的一切正有理数
a
、零、以及一切负有理数都归入
我自己在看书的时候疑惑为什么
A′
类中不包含使得
a′2>2
的负有理数,后来回看分割的定义(2)集合
A
中的每一数
结论:
a) 下类
A
无最大的数
b) 上类
性质a)证明
设下类
A
中任一正有理数
再假设存在大于
1
的正有理数n,满足
下面我们证明
n
存在
我们对这个不等式取满足条件或严格条件,得到
2an+1n2<2a+1n<2−a2
只要取
n>2a+12−a2
, 就可以满足
(a+1n)2<2
例如
a=1
, 我们取
n=4
就满足情况
补充说明:原教材此处未指明
n
的范围。因为
因此处的
a
是
性质b)证明
设上类
再假设存在正有理数n,满足
(a′−1n)2>2
下面我们证明
n
存在
同样我们对这个不等式取满足条件或严格条件,得到
a′2−2>2a′n>2a′n−1n2
即只要满足
a′2−2>2a′n
, 就可以满足
(a′−1n)2>2
所以取
n>2a′a′2−2
, 这样满足条件的
n
显然存在
例如
因为此处的
a′
是上类
A′
中任一数,所以我们在
A′
类中总能找到比
a′
小的数, 所以下类
A′
中不存在最小的数
补充说明: 原教材没有给出证明。这个证明也要在
a′−1n>0
的前提下,这样
a′−1n
也属于上类
A′
总结:第三类分割情形下,界数不存在,或者说分割不定义任何有理数,我们引进新的对象无理数,并说第三类分割定义了无理数
α
, 不难想这个新的数就是
2√
4.实数的有序化
把有理数与无理数统称为实数,现在需要建立实数的“大小”的概念
a) 相等
无理数:由两个分割
A|A′
与
B|B′
分别所定义的两无理数
α
与
β
相等,当且仅当这两个分割相同时才算是相等
有理数:由两个分割
A|A′
与
B|B′
分别所定义的两有理数
α
与
β
相等,当且仅当这两个分割相同时才算是相等
两个分割
A|A′
与
B|B′
相等,则当两个分割同为有理数分割或同为无理数分割时,两个分割
A|A′
与
B|B′
定义的数
α
与
β
相等
b) 大于
有理数:中学课本已知
无理数:两个分割
A|A′
与
B|B′
分别所定义的两无理数
α
与
β
,我们把具有较大的下类的那个数算是较大的,算作
α>β
c) 小于
两个分割
A|A′
与
B|B′
分别所定义的两无理数
α
与
β
,我们把具有较小的下类的那个数算是较小的,算作
α<β
两个引理
引理1
不论
α
与
β
是两个怎样的实数,若
α>β
,总可找到这样的实数
r
使得
引理2
α
与
β
是两个给定的实数, 如果不论取怎样的有理数
e>0
, 总能使
α
与
β
夹在两个有理数的中间:
s′≥α≥s
,
s′≥β≥s
其中
s′−s<e
, 则
α
与
β
必定相等
这两个引理不再证明,书本上也可以理解
5.实数的完备性
在考虑有理数的分割时,有时有这样一种分割即上面的第三类分割,使在这集合中没有产生分割的界数,这种有理数集合在其内留有空隙的性质称为不完备性
而对实数的分割来说,可以证明这种空隙不存在,把实数集合的这个性质叫做它的完备性
叙述为戴德金基本定理
对于实数集合的分割
A|A′
(1)每一个实数在且只在
A
与
(2)集合
A
中的每一数
存在有产生这个分割的实数
β
,这个数
β
1)或者是下类
A
中的最大数
2)或者是上类
证明如下:
对实数集合的任一分划
A|A′
,可以假设
A′
中无最小数
∀a∈A
,
b∈A′
意味着这种分割切出了不属于实数的界数
c
,倘若存在,这个界数是针对新的数集而言,并非实数集
由于此时
A|A′
是实数集的分划,有理数集又是实数集的真子集,则
A|A′
也是有理数集的分划
但由实数的定义,即实数是有理数的所有分划的集合知,有理数只有两种分划,即有理分划和无理分划。这与
c
不属于
补充:菲赫金哥尔茨的《数学分析原理》在戴德金定理的证明存在一些描述的问题,让人看不懂
6.结语
为期几天的数学分析学习,感受到了数学的严谨之美,不得不吐槽俄罗斯的数学教材的晦涩,一小节我读了好遍,而且不知道是翻译问题还是作者的问题,书本有些内容没有描述清楚。总体而言还是非常好的教材,我感觉比国内的一些直接讲极限的教材好些,若是辅助其他教材来看,效果会更好些。