Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。
1. DTW方法原理
在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词内的不同音素的发音速度也不同,比如有的人会把“A”这个音拖得很长,或者把“i”发的很短。另外,不同时间序列可能仅仅存在时间轴上的位移,亦即在还原位移的情况下,两个时间序列是一致的。在这些复杂情况下,使用传统的欧几里得距离无法有效地求的两个时间序列之间的距离(或者相似性)。
DTW通过把时间序列进行延伸和缩短,来计算两个时间序列性之间的相似性:
如上图所示,上下两条实线代表两个时间序列,时间序列之间的虚线代表两个时间序列之间的相似的点。DTW使用所有这些相似点之间的距离的和,称之为归整路径距离(Warp Path Distance)来衡量两个时间序列之间的相似性。
2. DTW计算方法:
令要计算相似度的两个时间序列为X和Y,长度分别为|X|和|Y|。
归整路径(Warp Path)
归整路径的形式为W=w1,w2,...,wK,其中Max(|X|,|Y|)<=K<=|X|+|Y|。
wk的形式为(i,j),其中i表示的是X中的i坐标,j表示的是Y中的j坐标。
归整路径W必须从w1=(1,1)开始,到wK=(|X|,|Y|)结尾,以保证X和Y中的每个坐标都在W中出现。
另外,W中w(i,j)的i和j必须是单调增加的,以保证图1中的虚线不会相交,所谓单调增加是指:
最后要得到的归整路径是距离最短的一个归整路径:
最后求得的归整路径距离为D(|X|,|Y|),使用动态规划来进行求解:
上图为代价矩阵(Cost Matrix) D,D(i,j)表示长度为i和j的两个时间序列之间的归整路径距离。
3. DTW实现:
matlab代码:
function dist = dtw(t,r) n = size(t,1); m = size(r,1); % 帧匹配距离矩阵 d = zeros(n,m); for i = 1:n for j = 1:m d(i,j) = sum((t(i,:)-r(j,:)).^2); end end % 累积距离矩阵 D = ones(n,m) * realmax; D(1,1) = d(1,1); % 动态规划 for i = 2:n for j = 1:m D1 = D(i-1,j); if j>1 D2 = D(i-1,j-1); else D2 = realmax; end if j>2 D3 = D(i-1,j-2); else D3 = realmax; end D(i,j) = d(i,j) + min([D1,D2,D3]); end end dist = D(n,m);
C++实现:
dtwrecoge.h
dtwrecoge.cpp
C++代码下载:DTW算法.rar