Dynamic Time Warping 动态时间规整算法

Dynamic Time Warping(DTW)是一种衡量两个时间序列之间的相似度的方法,主要应用在语音识别领域来识别两段语音是否表示同一个单词。

1. DTW方法原理

在时间序列中,需要比较相似性的两段时间序列的长度可能并不相等,在语音识别领域表现为不同人的语速不同。而且同一个单词内的不同音素的发音速度也不同,比如有的人会把“A”这个音拖得很长,或者把“i”发的很短。另外,不同时间序列可能仅仅存在时间轴上的位移,亦即在还原位移的情况下,两个时间序列是一致的。在这些复杂情况下,使用传统的欧几里得距离无法有效地求的两个时间序列之间的距离(或者相似性)。

DTW通过把时间序列进行延伸和缩短,来计算两个时间序列性之间的相似性:

如上图所示,上下两条实线代表两个时间序列,时间序列之间的虚线代表两个时间序列之间的相似的点。DTW使用所有这些相似点之间的距离的和,称之为归整路径距离(Warp Path Distance)来衡量两个时间序列之间的相似性。

2. DTW计算方法:

令要计算相似度的两个时间序列为X和Y,长度分别为|X|和|Y|。

归整路径(Warp Path)

归整路径的形式为W=w1,w2,...,wK,其中Max(|X|,|Y|)<=K<=|X|+|Y|。

wk的形式为(i,j),其中i表示的是X中的i坐标,j表示的是Y中的j坐标。

归整路径W必须从w1=(1,1)开始,到wK=(|X|,|Y|)结尾,以保证X和Y中的每个坐标都在W中出现。

另外,W中w(i,j)的i和j必须是单调增加的,以保证图1中的虚线不会相交,所谓单调增加是指:

最后要得到的归整路径是距离最短的一个归整路径:

最后求得的归整路径距离为D(|X|,|Y|),使用动态规划来进行求解:

上图为代价矩阵(Cost Matrix) D,D(i,j)表示长度为i和j的两个时间序列之间的归整路径距离。

3. DTW实现:

matlab代码:

复制代码
function dist = dtw(t,r)
n = size(t,1);
m = size(r,1);
% 帧匹配距离矩阵
d = zeros(n,m);
for i = 1:n
    for j = 1:m
        d(i,j) = sum((t(i,:)-r(j,:)).^2);
    end
end
% 累积距离矩阵
D = ones(n,m) * realmax;
D(1,1) = d(1,1);
% 动态规划
for i = 2:n
    for j = 1:m
        D1 = D(i-1,j);
        if j>1
            D2 = D(i-1,j-1);
        else
            D2 = realmax;
        end
        if j>2
            D3 = D(i-1,j-2);
        else
            D3 = realmax;
        end
        D(i,j) = d(i,j) + min([D1,D2,D3]);
    end
end
dist = D(n,m);
复制代码

C++实现:

dtwrecoge.h

View Code

 dtwrecoge.cpp

View Code

C++代码下载:DTW算法.rar

 出处:http://www.cnblogs.com/luxiaoxun/

在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语音识别,机器学习方便有着很重要的作用。 这个算法是基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,简单来说,就是通过构建一个邻接矩阵,寻找最短路径和。 还以上面的2个序列作为例子,A中的10和B中的2对应以及A中的2和B中的10对应的时候,distance[3]以及distance[4]肯定是非常大的,这就直接导致了最后距离和的膨胀,这种时候,我们需要来调整下时间序列,如果我们让A中的10和B中的10 对应 ,A中的1和B中的2对应,那么最后的距离和就将大大缩短,这种方式可以看做是一种时间扭曲,看到这里的时候,我相信应该会有人提出来,为什么不能使用A中的2与B中的2对应的问题,那样的话距离和肯定是0了啊,距离应该是最小的吧,但这种情况是不允许的,因为A中的10是发生在2的前面,而B中的2则发生在10的前面,如果对应方式交叉的话会导致时间上的混乱,不符合因果关系。 接下来,以output[6][6](所有的记录下标从1开始,开始的时候全部置0)记录A,B之间的DTW距离,简单的介绍一下具体的算法,这个算法其实就是一个简单的DP,状态转移公式是output[i] [j]=Min(Min(output[i-1][j],output[i][j-1]),output[i-1][j-1])+distance[i] [j];最后得到的output[5][5]就是我们所需要的DTW距离.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值