算法时间复杂度

本文介绍了算法时间复杂度的概念,包括时间频度、大O记法,并通过举例和图形解释了为何可以忽略常数项、低阶项和系数。常见的时间复杂度阶别从低到高排列,并指出在算法设计中应尽量避免指数阶的算法,以提高效率。
摘要由CSDN通过智能技术生成

还没有写完,别看。。。

时间频度

基本介绍:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
举例:如下是计算1-n的和的两种算法

for(int i = 0;i<=n;i++){
   
  sum+=i;
}

T(n) = n
total = (1+n)*n/2;

T(n) = 1
算法时间复杂度

一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值