树是什么
和数组、链表一样,树也是一种数据结构,只是数据的组织形式不同而已,看下面的示意图。
较官方的定义:树(Tree)是n(n>=0)个节点的有限集。n=0时称为空树。在任意一颗非空树中:(1)有且只有一个称为根(Root)的节点;(2)当n>1时,其余节点可分为m(m>0)个互不相交的优先级T1、T2、T3…Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。
关于第2点:什么叫互不相交,如图4、图5就不是一颗符合定义的树,因为他们有相交的子树。
- 数组存储方式的分析
优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。
缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低。
*总结:*增删慢,查找快。 - 链式存储方式的分析
优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。
缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历) 。
*总结:*增删快,查找慢。 - 树存储方式的分析
能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的查找速度,同时也可以保证数据的插入,删除,修改的速度,中和了数组和链表的优点,说白了就是提高效率。不明白没关系,后面慢慢道来。
树的相关术语
树的相关术语:
- 节点:和链表一样,树也是由一颗颗的节点组成。
- 根节点:最上层的那颗节点A就是根节点,根节点只有一颗,别和现实中的大树混在一起。
- 双亲节点(也可以叫父节点):如图中C就是E和F的双亲。
- 孩子节点:如图中的C是A的子节点。
- 子树:如图中的虚线框起来的就是两颗子树。
- 节点的度(Degree):节点拥有的子树数称为节点的度。
- 树的度:树内各个节点的度的最大值。
- 分支节点(也叫非终端节点):度不为0的节点,除了根节点,分支节点也叫内部节点。
- 叶子节点(也叫终端节点):度为0的节点,如图中的G、H、I、J的度就为0,是叶子节点。
- 树的深度(也叫高度,层数):如上图的树的层数为4。