深度学习笔记

TensorBoard的使用

SummaryWriter类的使用
参考:SummaryWriter类(pytorch版)

SummaryWriter类中的常用函数 ---- add_scalar()和add_image()
以以下代码为说明:

from PIL import Image
import numpy as np
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter("logs") # 创建一个logs文件夹,writer写的文件都在该文件夹下
img_path = "data/train/ants/0013035.jpg"
img_PIL = Image.open(img_path)
img_array = np.array(img_PIL) #将格式转换为numpy.array形式
writer.add_image("test", img_array, 1, dataformats="HWC") #add_image()函数的shape默认设置为'CHW'形式,此出需要通过dataformats进行修改
for i in range(100):
    writer.add_scalar("y=4x", 4 * i, i)

writer.close()

Transforms的使用

Transforms用途
① Transforms当成工具箱的话,里面的class就是不同的工具。例如像totensor、resize这些工具。

② Transforms拿一些特定格式的图片,经过Transforms里面的工具,获得我们想要的结果。

transforms.Totensor的使用

from PIL import Image
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter

img_path = "data/train/bees/39747887_42df2855ee.jpg"
img = Image.open(img_path)
tensor_trans = transforms.ToTensor() # 创建 transforms.ToTensor类 的实例化对象
tensor_img = tensor_trans(img) #转化为Tensor类型
writer = SummaryWriter("logs")
writer.add_image("tensor_img", tensor_img)
writer.close()

在pycharm的控制台下使用 tensorboard --logdir="创建的文件夹名"即可查看tensorboard显示日志情况。
由于我创建的文件夹名为"logs",使用命令为tensorboard --logdir="logs"

显示的日志情况如下:

Normanize归一化

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer = SummaryWriter("logs")
img = Image.open("images/demo1.jpg")
# toTensor
trans_toTensor = transforms.ToTensor()
img_tensor = trans_toTensor(img)

print(img_tensor[0][0][0])
# 计算方式``output[channel] = (input[channel] - mean[channel]) / std[channel]``
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("test2", img_norm)
writer.close()

计算结果:
在这里插入图片描述
显示的日志情况如下:

Resize

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer = SummaryWriter("logs")
img = Image.open("images/demo1.jpg")

# Resize
print(img)
trans_resize = transforms.Resize((512, 512))#将图片裁剪为512x512的样式
img_resize = trans_resize(img)
print(img_resize)

结果如下:

Compose
torchvision.transforms是pytorch中的图像预处理包,一般用Compose把多个步骤整合到一起,以下代码我们将Resize和ToTensor操作整合到一起。

from PIL import Image
from torchvision import transforms

# toTensor
trans_toTensor = transforms.ToTensor()
img_tensor = trans_toTensor(img)

# compose
trans_resize2 = transforms.Resize(400)
print(trans_resize2(img))
trans_compose = transforms.Compose([trans_resize2, trans_toTensor])
img_resize2 = trans_compose(img)
print(img_resize2)

结果如下:

TorchVision中数据集的使用

import torchvision
from torch.utils.tensorboard import SummaryWriter

# 定义对dataset的ToTensor操作
trans_dataset = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=trans_dataset, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=trans_dataset, download=True)
# 打印test_set的第一个样本
print(test_set[0])

writer = SummaryWriter("logs")
for i in range(10):
    img, target = test_set[i]
    writer.add_image("test_img", img, i)
writer.close()

结果如下:

日志显示情况如下:

Dataloader的使用

import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader

test_set = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_set, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
# 测试集中第一张图片的shape和target
img, target = test_set[0]
print(img.shape)
print(target)
writer = SummaryWriter("logs")
step = 0
for data in test_loader:
    imgs, targets = data
    writer.add_images("test_loader", imgs, step)
    step += 1
writer.close()

测试集中第一张图片的shape和target结果如下:

日志显示情况如下:

图片的数量不是我们设置的batch_size值的整数倍,可以看到在最后一步中,图片的数量比我们设置的batch_size值小。
#将drop_last值设置为True
test_loader = DataLoader(dataset=test_set, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

日志显示情况如下:

可以看到原本在最后一步中的图片的数量被省去了。

卷积操作

import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

output = F.conv2d(input, kernel, stride=1)
# print(output)
output2 = F.conv2d(input, kernel, stride=2)
print(output2)
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)

结果如下:

神经网络-卷积层

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root="../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)


class Module_conv(nn.Module):

    def __init__(self) -> None:
        super().__init__()
        self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, input):
        input = self.conv1(input)
        return input


module_conv = Module_conv()

writer = SummaryWriter("../logs")
step = 0
for data in dataloader:
    imgs, targets = data
    imgs_output = module_conv(imgs)
    step += 1
    writer.add_images("module_conv_in", imgs, step)
    # torch.Size([16, 6, 30, 30]) --->torch.Size([xx, 3, 30, 30])
    imgs_output = torch.reshape(imgs_output, (-1, 3, 30, 30))
    writer.add_images("module_conv_out", imgs_output, step)
writer.close()

日志显示情况如下:

最大池化

对input进行最大池化操作(input值如下代码所示)

import torch
from torch import nn
from torch.nn import MaxPool2d

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]], dtype=torch.float32)

input = torch.reshape(input, (1, 1, 5, 5))


class Maxpool_nn(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


maxpool2d_nn = Maxpool_nn()
output = maxpool2d_nn(input)
print(output)

对CIFAR10(点击加入pytorch官网查看CIFAR10数据集)测试集中的图片进行最大池化操作

import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)


class Maxpool_nn(nn.Module):
    def __init__(self):
        super().__init__()
        self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)

    def forward(self, input):
        output = self.maxpool1(input)
        return output


writer = SummaryWriter("../logs")
maxpool2d_nn = Maxpool_nn()
step = 0
for data in dataloader:
    imgs, targets = data
    step += 1
    writer.add_images("img", imgs, global_step=step)
    maxpool_imgs = maxpool2d_nn(imgs)
    writer.add_images("maxpool_img", maxpool_imgs, global_step=step)

writer.close()

非线性激活

Relu函数
Relu函数计算方式如下:

import torch
from torch import nn
from torch.nn import ReLU

input = torch.tensor([[1, -1.5],
                      [-2.5, 3]])
input = torch.reshape(input, (1, 1, 2, 2))


class Nolinear_nn(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu1 = ReLU()

    def forward(self, input):
        output = self.relu1(input)
        return output


nolinear1 = Nolinear_nn()
output = nolinear1(input)
print(output)

Sigmoid函数

import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)


class Nolinear_nn(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu1 = ReLU()
        self.sigmoid1 = Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output


nolinear1 = Nolinear_nn()
writer = SummaryWriter("../logs")
step = 0
for data in dataloader:
    step += 1
    imgs, targets = data
    imgs_sigmoid = nolinear1(imgs)
    writer.add_images("imgs_nl", imgs, global_step=step)
    writer.add_images("imgs_sigoid", imgs_sigmoid, global_step=step)

writer.close()

线性层

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True
                                
dataloader = DataLoader(dataset, batch_size=64, drop_last=True)   # 样本数量可能不是batch_size的整数倍,使用drop_last=True将多余的样本舍去

class linear_nn(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = Linear(196608, 10)

    def forward(self, input):
        output = self.linear1(input)
        return output


linear1 = linear_nn()
for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
    imgs_re = torch.reshape(imgs, (1, 1, 1, -1))# 此行代码可用imgs_re = torch.flatten(imgs)替换
    print(imgs_re.shape)
    imgs_linear = linear1(imgs_re)
    print(imgs_linear.shape)

小型网络搭建和Sequential使用

使用的模型框架(由三层卷积、最大池化层以及两层的线性层构成)如下:

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter


class ModulePrac(nn.Module):
    def __init__(self):
        super().__init__()
        self.module1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)

        )

    def forward(self, x):
        x = self.module1(x)
        return x


module1 = ModulePrac()
input1 = torch.ones((64, 3, 32, 32))
output = module1(input1)
print(output.shape)
writer = SummaryWriter("../logs")
writer.add_graph(module1, input1)
writer.close()

使用的输入其batch_size设置为64,最后经过模型后的输入大小即为64x10,结果如下:

日志显示情况如下:

损失函数与反向传播

使用的模型框架是上一节(小型网络搭建和Sequential使用)中定义

from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
import torchvision
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=64)


class ModulePrac(nn.Module):
    def __init__(self):
        super().__init__()
        self.module1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)

        )

    def forward(self, x):
        x = self.module1(x)
        return x

loss = nn.CrossEntropyLoss()
modulePrac1 = ModulePrac()
for data in dataloader:
    imgs, targets = data
    outputs = modulePrac1(imgs)
    loss_res = loss(outputs, targets)
    loss_res.backward()
    print("ok")

我们在第41行代码中打上断点进行调试,可以看到以下这些属性:
在这里插入图片描述

优化器

import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
import torchvision
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10(root="../dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)
dataloader = DataLoader(dataset, batch_size=1)


class ModulePrac(nn.Module):
    def __init__(self):
        super().__init__()
        self.module1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)

        )

    def forward(self, x):
        x = self.module1(x)
        return x


loss = nn.CrossEntropyLoss()
modulePrac1 = ModulePrac()
optim = torch.optim.SGD(modulePrac1.parameters(), lr=0.001)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        outputs = modulePrac1(imgs)
        loss_res = loss(outputs, targets)
        optim.zero_grad()
        loss_res.backward()
        optim.step()
        running_loss += loss_res
    print(f'第{epoch+1}轮的running_loss值为:', running_loss)

我们将训练轮次设为20,输出每轮累积的loss值,结果如下:

网络模型的使用及修改

代码以vgg16模型为例进行展示:

import torchvision
from torch import nn

dataset = torchvision.datasets.CIFAR10('../dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                       download=True)

vgg16_false = torchvision.models.vgg16(pretrained=False)
print(vgg16_false)
vgg16_false.classifier.add_module("add_linear", nn.Linear(1000, 10))
print(vgg16_false)
vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true)
vgg16_true.classifier[6] = nn.Linear(1000, 10)
print(vgg16_true)

代码是在vgg16模型中的classifier中的结构如下:


网络模型的修改
使用以下代码在classifier中增加一个1000x10的线性层

vgg16_false.classifier.add_module("add_linear", nn.Linear(1000, 10))

结果如下:

使用以下代码在classifier中将第7层的4096x1000的线性层改为1000x10的线性层

vgg16_true.classifier[6] = nn.Linear(1000, 10)

结果如下:

完整模型的训练

使用的模型框架(由三层卷积、最大池化层以及两层的线性层构成)如下:

模型的代码如下:

# 搭建神经网络
from torch import nn


class ModuleTrain(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.module = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.module(x)
        return x

使用的数据集为CIFAR10来进行分类,示例代码如下:

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter

from src.module_common import *
from torch.utils.data import DataLoader

# 准备数据集
train_data = torchvision.datasets.CIFAR10('../dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10('../dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 创建网络模型
module1 = ModuleTrain()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learning_rate = 1e-2
optim = torch.optim.SGD(module1.parameters(), lr=learning_rate)

# 设置网络训练的一些参数
# 训练次数
train_step = 0
# 测试次数
test_step = 0
# 训练轮数
epoch = 10

writer = SummaryWriter('../logs')

for i in range(epoch):
    print(f"第{i + 1}轮训练开始!")
    # 训练步骤开始
    for data in train_dataloader:
        imgs, tragets = data
        output = module1(imgs)
        loss = loss_fn(output, tragets)
        # 优化器优化模型
        optim.zero_grad()
        loss.backward()
        optim.step()
        train_step += 1
        if train_step % 100 == 0:
            # print(f'第{train_step}次训练的loss值:{loss}')
            writer.add_scalar("train_loss", loss, train_step)

    # 测试步骤开始
    with torch.no_grad():
        loss_test_sum = 0
        total_accuracy = 0
        for data in test_dataloader:
            imgs, targets = data
            output = module1(imgs)
            loss = loss_fn(output, targets)
            loss_test_sum += loss
            accuracy = (output.argmax(1) == targets).sum()
            total_accuracy += accuracy

        # print(f"第{i + 1}轮测试集的loss值和:{loss_test_sum}")
        print(f"第{i + 1}轮测试集的正确率:{total_accuracy / len(test_data)}")
        test_step += 1
        writer.add_scalar("test_lossSum", loss_test_sum, test_step)
        writer.add_scalar("test_lossAccuract", total_accuracy / len(test_data), test_step)
        # 保存模型
        # torch.save(module1, f"module1_{i}.pth")


writer.close()

结果如下:

利用gpu训练

利用gpu训练1——cuda
对网络模型、损失函数、数据(输入和标注)使用.cuda(),示例如下:

# 网络模型
 module1 = module1.cuda()
 # 损失函数
 loss_fn = loss_fn.cuda()
 # 数据(输入和标注)
 imgs = imgs.cuda()
 tragets = targets.cuda()

以上一章节的代码为例:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch.utils.tensorboard import SummaryWriter
from torch import nn
import torchvision
from torch.utils.data import DataLoader
import time
# 准备数据集
train_data = torchvision.datasets.CIFAR10('../dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10('../dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 创建网络模型
class ModuleTrain(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.module = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.module(x)
        return x


module1 = ModuleTrain()
if torch.cuda.is_available():
    module1 = module1.cuda()

# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

# 优化器
learning_rate = 1e-2
optim = torch.optim.SGD(module1.parameters(), lr=learning_rate)

# 设置网络训练的一些参数
# 训练次数
train_step = 0
# 测试次数
test_step = 0
# 训练轮数
epoch = 10

time_start = time.time()
writer = SummaryWriter('../logs')

for i in range(epoch):
    print(f"第{i + 1}轮训练开始!")
    # 训练步骤开始
    for data in train_dataloader:
        imgs, tragets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            tragets = targets.cuda()
        output = module1(imgs)
        loss = loss_fn(output, tragets)
        # 优化器优化模型
        optim.zero_grad()
        loss.backward()
        optim.step()
        train_step += 1
        time_end = time.time()
        if train_step % 100 == 0:
            # print(f'第{train_step}次训练的loss值:{loss}')
            writer.add_scalar("train_loss", loss, train_step)

    # 测试步骤开始
    with torch.no_grad():
        loss_test_sum = 0
        total_accuracy = 0
        for data in test_dataloader:
            imgs, targets = data
            output = module1(imgs)
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                tragets = targets.cuda()
            loss = loss_fn(output, targets)
            loss_test_sum += loss
            accuracy = (output.argmax(1) == targets).sum()
            total_accuracy += accuracy

        # print(f"第{i + 1}轮测试集的loss值和:{loss_test_sum}")
        print(f"第{i + 1}轮测试集的正确率:{total_accuracy / len(test_data)}")
        test_step += 1
        writer.add_scalar("test_lossSum", loss_test_sum, test_step)
        writer.add_scalar("test_lossAccuract", total_accuracy / len(test_data), test_step)
        # 保存模型
        # torch.save(module1, f"module1_{i}.pth")

writer.close()

利用gpu训练2——device
对网络模型、损失函数、数据(输入和标注)使用.to(device),先torch.device(“cuda或cpu”)定义训练的设备,然后对网络模型、损失函数、数据(输入和标注).to(device)示例如下:

#定义训练的设备
device = torch.device("cuda")
#若没有gpu则使用cpu进行训练
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 网络模型
 module1 = module1.to(device) #等价于module1.to(device)
 # 损失函数
 loss_fn = loss_fn.to(device)#等价于loss_fn.to(device)
 # 数据(输入和标注)
 imgs = imgs.to(device)
 tragets = targets.to(device)

具体代码如下:

import torch
from torch.utils.tensorboard import SummaryWriter
from torch import nn
import torchvision
from torch.utils.data import DataLoader
import time

# 定义训练的设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 准备数据集
train_data = torchvision.datasets.CIFAR10('../dataset', train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10('../dataset', train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 创建网络模型
class ModuleTrain(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.module = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.module(x)
        return x


module1 = ModuleTrain()
module1.to(device)

# 损失函数
loss_fn = nn.CrossEntropyLoss()
module1.to(device)

# 优化器
learning_rate = 1e-2
optim = torch.optim.SGD(module1.parameters(), lr=learning_rate)

# 设置网络训练的一些参数
# 训练次数
train_step = 0
# 测试次数
test_step = 0
# 训练轮数
epoch = 10

time_start = time.time()
writer = SummaryWriter('../logs')

for i in range(epoch):
    print(f"第{i + 1}轮训练开始!")
    # 训练步骤开始
    for data in train_dataloader:
        imgs, tragets = data
        imgs = imgs.to(device)
        tragets = tragets.to(device)
        output = module1(imgs)
        loss = loss_fn(output, tragets)
        # 优化器优化模型
        optim.zero_grad()
        loss.backward()
        optim.step()
        train_step += 1
        time_end = time.time()
        if train_step % 100 == 0:
            # print(f'第{train_step}次训练的loss值:{loss}')
            print(time_end-time_start)
            writer.add_scalar("train_loss", loss, train_step)

    # 测试步骤开始
    with torch.no_grad():
        loss_test_sum = 0
        total_accuracy = 0
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            tragets = tragets.to(device)
            output = module1(imgs)
            loss = loss_fn(output, targets)
            loss_test_sum += loss
            accuracy = (output.argmax(1) == targets).sum()
            total_accuracy += accuracy

        # print(f"第{i + 1}轮测试集的loss值和:{loss_test_sum}")
        print(f"第{i + 1}轮测试集的正确率:{total_accuracy / len(test_data)}")
        test_step += 1
        writer.add_scalar("test_lossSum", loss_test_sum, test_step)
        writer.add_scalar("test_lossAccuract", total_accuracy / len(test_data), test_step)
        # 保存模型
        # torch.save(module1, f"module1_{i}.pth")

writer.close()

模型验证

使用上一章节中gpu训练了10轮模型,然后将模型保存,训练的模型情况如下:

1到10轮的模型正确率情况如下:

使用的测试集有10类别,如下所示:

使用module1和module10模型进行测试:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from PIL import Image
from torch import nn
import torchvision

image_path = "../images/cat.jpg"
image_path2 = "../images/dog.jpg"
image_path3 = "../images/airplane.jpg"

list_test = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
image1 = Image.open(image_path)
image2 = Image.open(image_path2)
image3 = Image.open(image_path3)
# print(image1)
# 使用网络模型需要32x32的图片
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)), torchvision.transforms.ToTensor()])
image1 = transform(image1)
image2 = transform(image2)
image3 = transform(image3)


# print(image1.shape)


# 搭建神经网络
class ModuleTrain(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.module = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(1024, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.module(x)
        return x


# 使用已训练好保存的模型
module1 = torch.load("module1.pth")
module10 = torch.load("module10.pth")
# print(module)

image1 = torch.reshape(image1, (1, 3, 32, 32))
image2 = torch.reshape(image2, (1, 3, 32, 32))
image3 = torch.reshape(image3, (1, 3, 32, 32))
with torch.no_grad():
    output1 = module1(image1)
    output2 = module1(image2)
    output3 = module1(image3)
    output4 = module10(image1)
    output5 = module10(image2)
    output6 = module10(image3)

print("使用module1模型对猫图片的测试结果:", list_test[output1.argmax(1).item()])
print("使用module1模型对狗图片的测试结果:", list_test[output2.argmax(1).item()])
print("使用module1模型对飞机图片的测试结果:", list_test[output3.argmax(1).item()])
print("使用module10模型对猫图片的测试结果:", list_test[output4.argmax(1).item()])
print("使用module10模型对狗图片的测试结果:", list_test[output5.argmax(1).item()])
print("使用module10模型对飞机图片的测试结果:", list_test[output6.argmax(1).item()])

结果如下:

自动求导

自动求导分为以下两种模式:

在反向累积过程中计算需要正向累积中存储的中间结果

如下是一个简单的自动求导的例子:

import torch

x = torch.arange(4.0) # x为tensor([0., 1., 2., 3.]),arange函数中需使用float
x.requires_grad_(True)# 等价于x=torch.arange(4.0,requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)

结果如下:

梯度自动累积
PyTorch默认会对梯度进行累加。即PyTorch会在每一次backward()后进行梯度计算,但是梯度不会自动归零,如果不进行手动归零的话,梯度会不断累加。

#以x为例,清除之前x中梯度的值
x.grad.zero_()

线性神经网络

线性回归

在机器学习领域中的大多数任务通常都与预测(prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等)。机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。

线性模型
线性模型可以看做是一个单层的神经网络


衡量预估质量
一般采用平方损失来衡量真实值与预测值之间的误差

其中1 / 2:主要是为了求导的时候方便抵消平方的导数所产生的系数2


训练数据
收集一些数据来决定参数值(权重和偏差),这些数据被称为训练数据,训练数据通常越多越好

学习参数
损失函数采用平方损失,根据定义的损失函数来求均值

最小化损失函数来决定参数值

其中线性模型是有显示解的(一般来说,模型都没有显示解,有显示解的模型过于简单,复杂度有限,很难衡量复杂的数据)

基础优化算法

梯度下降

η:标量,表示学习率,代表沿着负梯度方向一次走多远,即步长。步长是一个超参数(需要人为的指定值) 学习率的选择不能太小,也不能太大(太小会导致计算量大,求解时间长;太大的话会导致函数值振荡,并没有真正的下降)


小批量随机梯度下降
梯度下降时,每次计算梯度,要对整个损失函数求导,损失函数是对所有样本的平均损失,所以每求一次梯度,要对整个样本的损失函数进行计算,计算量大且耗费时间长,代价太大。我们可以随机采样b个样本来计算近似损失。

其中b是批量大小,也是一个超参数。


选择批量大小不能太大,也不能太小。

线性回归的从零开始实现

import random
import torch


# 使用线性模型参数w = torch.tensor([2, -3.4]),b = 4.2生成数据集及其标签
def synthetic_data(w, b, num_examples):  # @save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))


true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)


# data_iter函数功能为接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。 每个小批量包含一组特征和标签。
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        # yield就是return一个值,并且记住返回的位置,下次迭代就从这个位置开始。
        yield features[batch_indices], labels[batch_indices]


# for X, y in data_iter(batch_size, features, labels):
#     print(X, '\n', y)
#     break

# 定义初始化模型参数
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)


# 定义模型
def linreg(X, w, b):  # @save
    """线性回归模型"""
    return torch.matmul(X, w) + b


# 定义损失函数
def squared_loss(y_hat, y):  # @save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2


# 定义优化算法
def sgd(params, lr, batch_size):  # @save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()


# 训练
batch_size = 10
learning_rate = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], learning_rate, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

可以看到loss值越来越小,结果如下:

若学习率过大,将学习率设置为3,即learning_rate = 3,结果如下:

若学习率过小,将学习率设置为0.003,即learning_rate = 0.003,结果如下:

若学习率不变,仍设置为0.003,更改num_epochs = 10,结果如下:

线性回归的简洁实现

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
from torch import nn  # nn是神经网络的缩写

# 生成数据集
true_w = torch.tensor([2, -3.4])
true_b = 4.2
# 使用synthetic_data(w, b, num_examples)生成数据集及其标签
features, labels = d2l.synthetic_data(true_w, true_b, 1000)


# 读取数据集
def load_array(data_arrays, batch_size, is_train=True):  # @save
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)


batch_size = 10
data_iter = load_array((features, labels), batch_size)

# 定义模型
net = nn.Sequential(nn.Linear(2, 1))

# 初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

# 定义损失函数
loss = nn.MSELoss()

# 定义优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.03)

# 训练
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

num_epochs = 3,batch_size = 10,学习率设置为0.03,结果如下:

softmax回归

分类问题
分类问题通常有多个输出,输出i是预测为第i类的置信度。

对类别进行一位有效编码

使用均方损失训练


最大值进行预测

softmax运算
softmax计算公式如下:

softmax和交叉熵损失

将y与y_hat作为损失:

其梯度(真实概率与预测概率的区别)为:

图像分类数据集

读取数据集
将Fashion-MNIST数据集下载并读取到内存中

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
# Fashion-MNIST数据集下载并读取到内存中
mnist_train = torchvision.datasets.FashionMNIST(root="E:\code\homework_dpLearning\softmaxImgData", train=True,
                                                transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="E:\code\homework_dpLearning\softmaxImgData", train=False,
                                               transform=trans, download=True)
print(len(mnist_train), len(mnist_test))
print(mnist_train[0][0].shape)

Fashion-MNIST由10个类别的图像组成, 每个类别由训练数据集(train dataset)中的6000张图像 和测试数据集(test dataset)中的1000张图像组成。 因此,训练集和测试集分别包含60000和10000张图像。 测试数据集不会用于训练,只用于评估模型性能。每个输入图像的高度和宽度均为28像素。 数据集由灰度图像组成,其通道数为1。


Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。我们定义show_images()函数来对样本进行可视化。

def get_fashion_mnist_labels(labels):  # @save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


# 样本可视化
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  # @save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    d2l.plt.show()
    return axes


X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))

训练数据集中前几个样本的图像及其相应的标签结果如下:

读取小批量

batch_size = 256


def get_dataloader_workers():  # @save
    """使用4个进程来读取数据"""
    return 4


train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())
# 查看读取训练数据所需的时间
timer = d2l.Timer()
for X, y in train_iter:
    continue
print(f'训练时间:{timer.stop():.2f} sec')

训练时间结果如下:

整合所有组件

# 定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集
def load_data_fashion_mnist(batch_size, resize=None):  # @save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root="E:\code\homework_dpLearning\softmaxImgData", train=True,
                                                    transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(root="E:\code\homework_dpLearning\softmaxImgData", train=False,
                                                   transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))


指定resize参数来测试load_data_fashion_mnist函数的图像大小调整功能

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break

结果如下:

softmax回归的从零开始实现

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# 初始化模型参数
num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)


# 定义softmax操作
def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition  # 这里应用了广播机制


# 定义模型
def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)


# 定义损失函数
def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])


# 分类精度
def accuracy(y_hat, y):  # @save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())


def evaluate_accuracy(net, data_iter):  # @save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]


# 定义一个实用程序类Accumulator,用于对多个变量进行累加
class Accumulator:  # @save
    """在n个变量上累加"""

    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


# 训练
def train_epoch_ch3(net, train_iter, loss, updater):  # @save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]


# 定义一个在动画中绘制数据的实用程序类Animator
class Animator:  # @save
    """在动画中绘制数据"""

    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)


def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  # @save
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics


lr = 0.1


def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)


num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
d2l.plt.show()

结果如下:

softmax回归的简洁实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# 初始化模型参数
# PyTorch不会隐式地调整输入的形状。因此,
# 我们在线性层前定义了展平层(flatten),来调整网络输入的形状
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)


net.apply(init_weights)

loss = nn.CrossEntropyLoss()

# 优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)

# 训练
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

结果如下:

多层感知机

多层感知机

单层感知机

线性回归输出的是一个实数,感知机输出的是一个离散的类。


训练感知机
(1)如果分类正确的话y<w,x>为正数,负号后变为一个负数,max后输出为0,则梯度不进行更新。

(2)如果分类错了,y<w,x>为负数,下图中的if判断就成立了,就有梯度进行更新。

多层感知机
单隐藏层

若不使用激活函数,全连接层连接在一起仍相遇于一个线性函数。

激活函数
(1)Sigmoid函数

(2)Tanh函数

(3)ReLU函数
① ReLU的好处在于不需要执行指数运算。
② 在CPU上一次指数运算相当于上百次乘法运算。

多类分类

多隐藏层

多层感知机的从零开始实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]


# ReLU激活函数
def relu(X):
    a = torch.zeros_like(X)
    return torch.max(X, a)


# 模型
def net(X):
    X = X.reshape((-1, num_inputs))
    H = relu(X @ W1 + b1)  # 这里“@”代表矩阵乘法
    return (H @ W2 + b2)


# 损失函数
loss = nn.CrossEntropyLoss()

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
d2l.plt.show()

结果如下:

多层感知机的简洁实现

import torch
from torch import nn
from d2l import torch as d2l

# 模型
net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    nn.Linear(256, 10))


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)


net.apply(init_weights)
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

结果如下:

模型选择、欠拟合和过拟合

训练误差和泛化误差

过拟合、欠拟合

模型容量也可以说是模型复杂度

多项式解释欠拟合、过拟合
使用以下三阶多项式来生成训练和测试数据的标签:

import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l

max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
    poly_features[:, i] /= math.gamma(i + 1)  # gamma(n)=(n-1)!
# labels的维度:(n_train+n_test,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)
# NumPy ndarray转换为tensor
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
torch.float32) for x in [true_w, features, poly_features, labels]]


# 对模型进行训练和测试
def evaluate_loss(net, data_iter, loss):  # @save
    """评估给定数据集上模型的损失"""
    metric = d2l.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]


# 定义训练函数
def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss()
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1, 1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1, 1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())

三阶多项式函数拟合(正常)

# 从多项式特征中选择前4个维度,即1,x,x^2/2!,x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])
d2l.plt.show()

结果如下:

线性函数拟合(欠拟合)

# 从多项式特征中选择前2个维度,即1和x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])
d2l.plt.show()

结果如下:

高阶多项式函数拟合(过拟合)

# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:])
d2l.plt.show()

结果如下:

权重衰退

权重衰退是常见的处理过拟合的一种方法。把模型容量控制比较小有两种方法,方法一:模型控制的比较小,使得模型中参数比较少。方法二:控制参数选择范围来控制参数容量。

如下图所示,w向量中每一个元素的值都小于θ的根号。 约束就是正则项。每个特征的权重都大会导致模型复杂,从而导致过拟合。控制权重矩阵范数可以使得减少一些特征的权重,甚至使他们权重为0,从而导致模型简单,减轻过拟合。

权重衰退的从零开始实现和简洁实现

从零开始实现

import torch
from torch import nn
from d2l import torch as d2l

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)


# 初始化模型参数
def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]


# 定义L2范数惩罚
def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2


# 定义训练代码实现
def train(lambd):
    w, b = init_params()
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())

忽略正则化直接训练

train(lambd=0)
d2l.plt.show()

结果如下:

训练误差有了减少,但测试误差没有减少, 这意味着出现了严重的过拟合。


使用权重衰减

train(lambd=3)
d2l.plt.show()

结果如下:

简洁实现

import torch
from d2l import torch as d2l
from torch import nn

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)


def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))
    for param in net.parameters():
        param.data.normal_()
    loss = nn.MSELoss()
    num_epochs, lr = 100, 0.003
    # 偏置参数没有衰减
    trainer = torch.optim.SGD([
        {"params": net[0].weight, 'weight_decay': wd},
        {"params": net[0].bias}], lr=lr)
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.mean().backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())

忽略正则化直接训练

train_concise(0)
d2l.plt.show()

使用权重衰减

train_concise(3)
d2l.plt.show()

丢弃法(Dropout)

丢弃法的从零开始实现和简洁实现

从零开始实现

import torch
from torch import nn
from d2l import torch as d2l


def dropout_layer(X, dropout):
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃
    if dropout == 1:
        return torch.zeros_like(X)
    # 在本情况中,所有元素都被保留
    if dropout == 0:
        return X
    mask = (torch.rand(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)


num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropout1, dropout2 = 0.2, 0.5


class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
                 is_training=True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)
        self.relu = nn.ReLU()

    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
        # 只有在训练模型时才使用dropout
        if self.training == True:
            # 在第一个全连接层之后添加一个dropout层
            H1 = dropout_layer(H1, dropout1)
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            # 在第二个全连接层之后添加一个dropout层
            H2 = dropout_layer(H2, dropout2)
        out = self.lin3(H2)
        return out


net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
# 训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

结果如下:

简洁实现

from d2l import torch as d2l
import torch
from torch import nn

dropout1, dropout2 = 0.2, 0.5

net = nn.Sequential(nn.Flatten(),
                    nn.Linear(784, 256),
                    nn.ReLU(),
                    # 在第一个全连接层之后添加一个dropout层
                    nn.Dropout(dropout1),
                    nn.Linear(256, 256),
                    nn.ReLU(),
                    # 在第二个全连接层之后添加一个dropout层
                    nn.Dropout(dropout2),
                    nn.Linear(256, 10))


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)


net.apply(init_weights)
# 训练和测试
num_epochs, lr, batch_size = 10, 0.5, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
loss = nn.CrossEntropyLoss()
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

数值稳定性和模型初始化

初始化方案的选择在神经网络学习中起着举足轻重的作用, 它对保持数值稳定性至关重要,数值稳定性的两个常见问题是梯度消失和梯度爆炸。

梯度爆炸
当W元素值大于1时,神经网络层数很深时,连乘会导致梯度爆炸。

梯度消失

训练更稳定

深度学习计算

层和块
nn.Sequential 定义了一种特殊的Module,下面的代码生成一个网络,其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层, 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。

import torch
from torch import nn

net = nn.Sequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
x = torch.rand(2, 20)
print(net(x))

结果如下:

自定义块

import torch
from torch import nn
from torch.nn import functional as F


class MLP(nn.Module):
    def __init__(self):
        super().__init__()  # 调用父类的__init__函数
        self.hidden = nn.Linear(20, 256)
        self.out = nn.Linear(256, 10)

    def forward(self, X):
        return self.out(F.relu(self.hidden(X)))


# 实例化多层感知机的层,然后在每次调用正向传播函数调用这些层
net = MLP()
X = torch.rand(2, 20)
print(net(X))

结果如下:

顺序块

class MySequential(nn.Module):
    def __init__(self, *args):
        super().__init__()
        for block in args:
            self._modules[block] = block  # block 本身作为它的key,存在_modules里面的为层,以字典的形式

    def forward(self, X):
        for block in self._modules.values():
            print(block)
            X = block(X)
        return X
        
net = MySequential(nn.Linear(20, 256), nn.ReLU(), nn.Linear(256, 10))
X = torch.rand(2, 20)
print(net(X))

结果如下:

正向传播

class FixedHiddenMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.rand_weight = torch.rand((20, 20), requires_grad=False)
        self.linear = nn.Linear(20, 20)

    def forward(self, X):
        X = self.linear(X)
        X = F.relu(torch.mm(X, self.rand_weight + 1))
        X = self.linear(X)
        while X.abs().sum() > 1:
            X /= 2
        return X.sum()


net = FixedHiddenMLP()
X = torch.rand(2, 20)
print(net(X))

结果如下:

混合组合块

class NestMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.net = nn.Sequential(nn.Linear(20, 64), nn.ReLU(),
                                 nn.Linear(64, 32), nn.ReLU())
        self.linear = nn.Linear(32, 16)

    def forward(self, X):
        return self.linear(self.net(X))


chimear = nn.Sequential(NestMLP(), nn.Linear(16, 20), FixedHiddenMLP())
X = torch.rand(2, 20)
print(chimear(X))

结果如下:

参数管理

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
print(net(X))
print(net[2].state_dict())  # 访问参数,net[2]就是最后一个输出层
print(type(net[2].bias))  # 目标参数
print(net[2].bias)
print(net[2].bias.data)
print(net[2].weight.grad == None)  # 还没进行反向计算,所以grad为None
print(*[(name, param.shape) for name, param in net[0].named_parameters()])  # 一次性访问所有参数
print(*[(name, param.shape) for name, param in net.named_parameters()])  # 0是第一层名字,1是ReLU,它没有参数
print(net.state_dict()['2.bias'].data)  # 通过名字获取参数

结果如下:

嵌套块

# 从嵌套块收集参数
def block1():
    return nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 4), nn.ReLU())


def block2():
    net = nn.Sequential()
    for i in range(4):
        net.add_module(f'block{i}',
                       block1())  # f'block{i}' 可以传一个字符串名字过来,block2可以嵌套四个block1
    return net


X = torch.rand(2, 4)
rgnet = nn.Sequential(block2(), nn.Linear(4, 1))
print(rgnet(X))
print(rgnet)

结果如下:

参数绑定

# 参数绑定
X = torch.rand(2, 4)
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), shared, nn.ReLU(), shared, nn.ReLU(),
                    nn.Linear(8, 1))  # 第2个隐藏层和第3个隐藏层是share权重的,第一个和第四个是自己的  
net(X)
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
print(net[2].weight.data[0] == net[4].weight.data[0])

结果如下:

自定义层

class CenteredLayer(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, X):
        return X - X.mean()


layer = CenteredLayer()
print(layer(torch.FloatTensor([1, 2, 3, 4, 5])))

# 将层作为组件合并到构建更复杂的模型中
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
Y = net(torch.rand(4, 8))
print(Y.mean())


# 带参数的图层
class MyLinear(nn.Module):
    def __init__(self, in_units, units):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(in_units, units))  # nn.Parameter使得这些参数加上了梯度
        self.bias = nn.Parameter(torch.randn(units, ))

    def forward(self, X):
        linear = torch.matmul(X, self.weight.data) + self.bias.data
        return F.relu(linear)


dense = MyLinear(5, 3)
print(dense.weight)

# 使用自定义层直接执行正向传播计算
print(dense(torch.rand(2, 5)))
# 使用自定义层构建模型
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
print(net(torch.rand(2, 64)))

结果如下:

读写文件

# 加载和保存张量
x = torch.arange(4)
torch.save(x, 'x-file')
x2 = torch.load("x-file")
print(x2)

# 存储一个张量列表,然后把它们读回内存
y = torch.zeros(4)
torch.save([x, y], 'x-files')
x2, y2 = torch.load('x-files')
print(x2)
print(y2)

# 写入或读取从字符串映射到张量的字典
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
print(mydict2)

结果如下:

# 加载和保存模型参数
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))


net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

# 将模型的参数存储为一个叫做"mlp.params"的文件
torch.save(net.state_dict(), 'mlp.params')

# 实例化了原始多层感知机模型的一个备份。直接读取文件中存储的参数
clone = MLP()  # 必须要先声明一下,才能导入参数
clone.load_state_dict(torch.load("mlp.params"))
print(clone.eval())  # eval()是进入测试模式

Y_clone = clone(X)
print(Y_clone == Y)

结果如下:

卷积神经网络

卷积层
卷积层进行的处理就是卷积运算。卷积运算相当于图像处理中的“滤波器运算”。

二维卷积运算

卷积层中的填充和步幅

我们假设卷积核大小为k * k,为了让卷积后的图像大小与原图一样大,根据公式可得到padding=(k-1)/2,这里的k只有在取奇数的时候,padding才能是整数,否则padding不好进行图片填充。
k为偶数时,p为浮点数,所做的操作为一个为向上取整,填充,一个为向下取整,填充。

步幅

卷积层里的多输入多输出通道

1x1卷积层

二维卷积层

池化层

LeNet网络
网络架构如下:
在这里插入图片描述

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch import nn
from d2l import torch as d2l


class Reshape(torch.nn.Module):
    def forward(self, x):
        return x.view(-1, 1, 28, 28)  # 批量数自适应得到,通道数为1,图片为28X28


net = torch.nn.Sequential(
    Reshape(), nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
# LeNet在Fashion-MNIST数据集上的表现
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
device = torch.device("cuda")


# 对evaluate_accuracy函数进行轻微的修改
def evaluate_accuracy_gpu(net, data_iter, device=None):
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # net.eval()开启验证模式,不用计算梯度和更新梯度
        if not device:
            device = next(iter(net.parameters())).device  # 看net.parameters()中第一个元素的device为哪里
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        if isinstance(X, list):
            X = [x.to(device) for x in X]  # 如果X是个List,则把每个元素都移到device上
        else:
            X = X.to(device)  # 如果X是一个Tensor,则只用移动一次,直接把X移动到device上
        y = y.to(device)
        metric.add(d2l.accuracy(net(X), y), y.numel())  # y.numel() 为y元素个数
    return metric[0] / metric[1]


# 为了使用GPU,还需要一点小改动
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """Train a model with a GPU"""

    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)  # 根据输入、输出大小,使得随即初始化后,输入和输出的的方差是差不多的

    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)

    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        net.train()

        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]

            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))

    print(f'loss {train_l:.3f},train acc {train_acc:.3f},'
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')


# 训练和评估LeNet-5模型
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

深度卷积神经网络

AlexNet

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch import nn
from d2l import torch as d2l


class Reshape(torch.nn.Module):
    def forward(self, x):
        return x.view(-1, 1, 28, 28)  # 批量数自适应得到,通道数为1,图片为28X28


net = torch.nn.Sequential(
    Reshape(), nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
# LeNet在Fashion-MNIST数据集上的表现
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)


# 对evaluate_accuracy函数进行轻微的修改
def evaluate_accuracy_gpu(net, data_iter, device=None):
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # net.eval()开启验证模式,不用计算梯度和更新梯度
        if not device:
            device = next(iter(net.parameters())).device  # 看net.parameters()中第一个元素的device为哪里
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        if isinstance(X, list):
            X = [x.to(device) for x in X]  # 如果X是个List,则把每个元素都移到device上
        else:
            X = X.to(device)  # 如果X是一个Tensor,则只用移动一次,直接把X移动到device上
        y = y.to(device)
        metric.add(d2l.accuracy(net(X), y), y.numel())  # y.numel() 为y元素个数
    return metric[0] / metric[1]


# 为了使用GPU,还需要一点小改动
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """Train a model with a GPU"""

    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)  # 根据输入、输出大小,使得随即初始化后,输入和输出的的方差是差不多的

    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)

    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        net.train()

        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]

            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))

    print(f'loss {train_l:.3f},train acc {train_acc:.3f},'
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')


# 训练和评估LeNet-5模型
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

结果如下:

VGG

# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch import nn
from d2l import torch as d2l


def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels,
                                kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
    return nn.Sequential(*layers)


conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))


def vgg(conv_arch):
    conv_blks = []
    in_channels = 1
    # 卷积层部分
    for (num_convs, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
        in_channels = out_channels

    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        # 全连接层部分
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
        nn.Linear(4096, 10))


net = vgg(conv_arch)

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

结果如下:

NiN模型

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch import nn
from d2l import torch as d2l


def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
        nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())


net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    nn.MaxPool2d(3, stride=2),
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    nn.MaxPool2d(3, stride=2),
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    nn.MaxPool2d(3, stride=2),
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    nn.AdaptiveAvgPool2d((1, 1)),
    # 将四维的输出转成二维的输出,其形状为(批量大小,10)
    nn.Flatten())

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

结果如下:

GoogLeNet

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Inception(nn.Module):
    # c1--c4是每条路径的输出通道数
    def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1x1卷积层
        self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
        # 线路2,1x1卷积层后接3x3卷积层
        self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1x1卷积层后接5x5卷积层
        self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3x3最大汇聚层后接1x1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        # 在通道维度上连结输出
        return torch.cat((p1, p2, p3, p4), dim=1)


b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.ReLU(),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   nn.AdaptiveAvgPool2d((1, 1)),
                   nn.Flatten())

net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

结果如下:

BatchNorm

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5), nn.BatchNorm2d(6), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.BatchNorm2d(16), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),
    nn.Linear(256, 120), nn.BatchNorm1d(120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.BatchNorm1d(84), nn.Sigmoid(),
    nn.Linear(84, 10))
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

结果如下:

ResNet

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : czyxw
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l


class Residual(nn.Module):  # @save
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))


def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1, 1)),
                    nn.Flatten(), nn.Linear(512, 10))
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

结果如下:

Transformer、GPT、BERT,预训练语言模型的有关理论知识

预训练

图像领域的预训练
在介绍图像领域的预训练之前,我们首先介绍下卷积神经网络(CNN),CNN 一般用于图片分类任务,并且CNN 由多个层级结构组成,不同层学到的图像特征也不同,越浅的层学到的特征越通用(横竖撇捺),越深的层学到的特征和具体任务的关联性越强(人脸-人脸轮廓、汽车-汽车轮廓),如下图所示:
在这里插入图片描述
由此,假设我们有一个任务:对猫、狗、马等动物进行分类,但每类动物仅有十张图片。
对于上述任务,如果我们亲手设计一个深度神经网络基本是不可能的,因为深度学习一个弱项就是在训练阶段对于数据量的需求特别大,而合计三十张图片显然这是不够的。

虽然上述任务的数据量很少,但是我们是否可以利用网上现有的大量已做好分类标注的图片。比如 ImageNet 中有 1400 万张图片,并且这些图片都已经做好了分类标注。

上述利用网络上现有图片的思想就是预训练的思想,具体做法就是:
通过 ImageNet 数据集我们训练出一个模型 A
由于上面提到 CNN 的浅层学到的特征通用性特别强,我们可以对模型 A 做出一部分改进得到模型 B(两种方法):
冻结:浅层参数使用模型 A 的参数,高层参数随机初始化,浅层参数一直不变,然后利用给出的 30 张图片训练参数
微调:浅层参数使用模型 A 的参数,高层参数随机初始化,然后利用给出的 30 张图片训练参数,但是在这里浅层参数会随着任务的训练不断发生变化

预训练是什么
通过一个训练好的模型A去完成一个数据量小的任务B(使用模型A的浅层参数),任务A和任务B是相似的。

语言模型

语言模型通俗点讲就是计算一个句子的概率,下面将介绍语言模型的两个分支,统计语言模型和神经网络语言模型。

统计语言模型
统计语言模型的基本思想就是计算条件概率。给定一句由 n个词组成的句子 W = w1,w2,…wn,计算这个句子的概率 P(w1,w2,…wn)的公式如下(条件概率乘法公式的推广,链式法则):
在这里插入图片描述
神经网络语言模型
神经网络语言模型则引入神经网络架构来估计单词的分布,并且通过词向量的距离衡量单词之间的相似度,因此,对于未登录单词,也可以通过相似词进行估计,进而避免出现数据稀疏问题。
在这里插入图片描述

词向量

独热(Onehot)编码
把单词用向量表示,是把深度神经网络语言模型引入自然语言处理领域的一个核心技术。
在自然语言处理任务中,训练集大多为一个字或者一个词,把他们转化为计算机适合处理的数值类数据非常重要。
在这里插入图片描述

但是,对于独热表示的向量,如果采用余弦相似度计算向量间的相似度,可以明显的发现任意两者向量的相似度结果都为 0,即任意二者都不相关,也就是说独热表示无法解决词之间的相似性问题。

余弦相似度计算公式:
在这里插入图片描述

Word Embedding
简单来说词向量就是用一个向量表示一个单词。
在这里插入图片描述
如上图所示,有一个Vxm的矩阵Q,这个矩阵 Q包含 V 行,V 代表词典大小,每一行的内容代表对应单词的 Word Embedding 值。矩阵Q是随机的,需要学习获得。

Word2Vec 模型

Word2Vec 的网络结构其实和神经网络语言模型(NNLM)是基本类似的,不过这里需要指出:尽管网络结构相近,而且都是做语言模型任务,但是他们训练方法不太一样。

Word2Vec 有两种训练方法:
第一种叫 CBOW,核心思想是从一个句子里面把一个词抠掉,用这个词的上文和下文去预测被抠掉的这个词;
第二种叫做 Skip-gram,和 CBOW 正好反过来,输入某个单词,要求网络预测它的上下文单词。
在这里插入图片描述
Word2Vec主要任务是通过训练学习获得矩阵Q,利用矩阵Q得到 Word Embedding,但是 Word2Vec无法解决一词多义的问题。

ELMo模型

ELMo(专门做词向量,通过预训练)
不只是训练一个 Q 矩阵,我还可以把这个词的上下文信息融入到这个 Q 矩阵中
在这里插入图片描述

通过训练将词的单词特征、句法特征、语义特征结合在一起,融入到词向量中,但是无法并行。

注意力机制

注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息,提高模型的性能和泛化能力。

注意力机制计算
查询对象 Q,被查询对象 V,去计算 Q 和 V 里的事物的重要度(一般K与V同源)
在这里插入图片描述

自注意力机制

Self-Attention 的关键点再于,不仅仅是 K≈V≈Q 来源于同一个 X,这三者是同源的,通过 X 找到 X 里面的关键点。计算思路(与注意力机制类似)

位置编码

Attention可以并行,但词与词之间不存在顺序关系(打乱一句话,这句话里的每个词的词向量依然不会变),即无位置关系(既然没有,我就加一个,通过位置编码的形式加)

位置编码
在这里插入图片描述

位置编码实现方法
在这里插入图片描述

在这里插入图片描述

Transformer

整体框架如下:

Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。

简单来说,Transformer所做的就是通过编码器对序列进行向量化(词向量),把词向量输入到解码器,得到结果(生成单词)

BPE算法

BPE (Byte Pair Encoding)全称为字节对编码,本质是一种数据压缩方法,它在数据压缩中原始的核心思路非常简单:
  每一步都将最常见的一对_相邻数据单位_替换为该数据中没有出现过的一个_新单位_,反复迭代直到满足停止条件 。比如有一段数据是“abbabyabya”,其中相邻字母对的组合中"ab"出现3次是出现最多,即可以使用一个字母Z去代替"ab",数据形式压缩成:“ZbZyZya”。以此类推,下一个’Zy’继续被替换成Y,数据形式变成:“ZbYYa”。

其中BPE算法的核心主要分成三个部分:

  • 词表构建
  • 语料编码
  • 语料解码

词表构建
词表构建是BPE算法的核心,其是「根据训练语料」来构建BPE算法的词表。算法的整体步骤如下所示:
1.准备模型的训练语料
2.确定「期望的词表大小」
3.将训练语料中的所有单词拆分为字符序列,利用这些字符序列构建初始的词表
4.统计训练语料中每一个连续字节对出现的频率,「选择出现频率最高的字节对合并成新的subword,并更新词表」
5.重复第4步,直到词表大小达到我们设定的期望或者剩下的字节对出现频率最高为1

下面我们通过一个例子来搞懂BPE词表构建的过程,假设在训练语料中出现了词汇low、lower、newest、widest,且出现次数分别为5、2、6、3,我们将这些单词切割为单个字符,且在单词尾部加入一个新的字符<\w>来表示这个单词的结束,最后加上单词出现的次数,如下所示:

 {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}

在每次迭代中,我们统计每个连续字节对的频率,找出最频繁的字节对,并将两个字节对的token合并为一个token。
对于上面的例子,在合并的第一次迭代中,由于字节对“e”和“s”出现了6+3=9次,这是最频繁的。我们将这些合并到一个新的标记“es”中。完成此次合并后,这个特定示例中的标记“s”消失,结果如下:

{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w es t </w>': 6, 'w i d es t </w>': 3}

接下来进行第二次迭代,在合并的第二次迭代中,标记“es”和“t”出现了 6 + 3 = 9 次,这是最频繁的。我们将这些合并到一个新的代币“est”中,标记“es”和“t”消失,结果如下:

{'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est </w>': 6, 'w i d est </w>': 3}

在合并的第三次迭代中,标记“est”和“”对是最频繁的,依此类推。我们可以设置迭代次数或最大令牌数,以控制我们想要拥有的令牌数量。

语料编码
词表构建好后,我们需要给训练语料中的单词进行编码。编码方式如下:
1.我们首先「将词表中所有的子词按照长度从大到小进行排序」2.
2.对于每一个给定的单词,我们遍历排序好的词表,寻找词表中的子词是否是该单词的子字符串。如果正好「匹配」,则输出当前子词,并对单词剩下的字符串继续匹配
3.如果遍历完词表,单词中仍然有子字符串没有被匹配,那我们将其替换为一个特殊的子词,比如<unk>
具个例子,假设我们现在构建好的词表为

(“errrr</w>, 
“tain</w>, 
“moun”, 
“est</w>, 
“high”, 
“the</w>, 
“a</w>)

对于给定的单词mountain</w>,其分词结果为:[moun, tain</w>]

语料解码
语料解码就是将所有的输出子词拼在一起,直到碰到结尾为<\w>。举个例子,假设模型输出为:

["moun", "tain</w>", "high", "the</w>"]

那么其解码的结果为["mountain</w>", "highthe</w>"]

参考:
BPE分词算法
https://leimao.github.io/blog/Byte-Pair-Encoding/

强化学习

强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。
  • 强化学习是一种机器学习方法
  • 强化学习关注智能体与环境之间的交互
  • 强化学习的目标一般是追求最大回报

换句话说,强化学习是一种学习如何从状态映射到行为以使得获取的奖励最大的学习机制。这样的一个agent需要不断地在环境中进行实验,通过环境给予的反馈(奖励)来不断优化状态-行为的对应关系。因此,反复实验(trial and error)和延迟奖励(delayed reward)是强化学习最重要的两个特征。

强化学习

RLHF(Reinforcement Learning from Human Feedback)

RLHF是一种基于人类反馈的强化学习机器学习(ML)技术,它利用人类反馈来优化 ML 模型,从而更有效地进行自我学习。

RLHF的训练过程可以分解为三个核心步骤:

  • 预训练语言模型(LM)
  • 收集数据并训练奖励模型
  • 通过强化学习微调 LM

阶段1:预训练语言模型
首先,我们需要选一个经典的预训练语言模型作为初始模型。例如,OpenAI 在其第一个RLHF 模型 InstructGPT 中用的小规模参数版本的 GPT-3;DeepMind 则使用了2800 亿参数的 Gopher 模型。这些语言模型往往见过大量的 [Prompt,Text] 对,输入一个prompt(提示),模型往往能输出还不错的一段文本。
这个步骤,可以用如下图所示:
在这里插入图片描述
阶段2:奖励模型的训练
一个奖励模型(RM)的目标是刻画模型的输出是否在人类看来表现不错。即,输入 [提示(prompt),模型生成的文本] ,输出一个刻画文本质量的标量数字,用于训练奖励模型的Prompt数据一般来自于一个预先富集的数据集。
整体流程如图所示:
在这里插入图片描述
阶段3:基于 RL 进行语言模型优化
我们将初始语言模型的微调任务建模为强化学习(RL)问题,因此需要定义策略(policy)、动作空间(action space)和奖励函数(reward function)等基本要素。

显然,策略就是基于该语言模型,接收prompt作为输入,然后输出一系列文本(或文本的概率分布);而动作空间就是词表所有token在所有输出位置的排列组合(单个位置通常有50k左右的token候选);观察空间则是可能的输入token序列(即prompt),显然也相当大,为词表所有token在所有输入位置的排列组合;而奖励函数(reward)则是基于上一章节我们训好的RM模型计算得到初始reward,再叠加上一个约束项来。

然后我们来看一下最后提到的这个约束项是什么。

首先,基于前面提到的预先富集的数据,从里面采样prompt输入,同时丢给初始的语言模型和我们当前训练中的语言模型(policy),得到俩模型的输出文本y1,y2。然后用奖励模型RM对y1、y2打分,判断谁更优秀。显然,打分的差值便可以作为训练策略模型参数的信号,这个信号一般通过KL散度来计算“奖励/惩罚”的大小。显然,y2文本的打分比y1高的越多,奖励就越大,反之惩罚则越大。这个信号就反映了当前模型有没有在围着初始模型“绕圈”,避免模型通过一些“取巧”的方式骗过RM模型获取高额reward。

最后,便是根据 Proximal Policy Optimization (PPO) 算法来更新模型参数了。

该阶段流程如下图所示:
在这里插入图片描述
通过可以迭代式的更新奖励模型(RM)和策略模型(policy),让奖励模型对模型输出质量的刻画愈加精确,策略模型的输出则愈能与初始模型拉开差距,使得输出文本变得越来越符合人的认知。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值