论文:Splitting Approaches for Context-Aware Recommendation:An Empirical Study 总结

论文对比分析了用户分类、项目分类和UI拆分三种上下文推荐系统方法,提出CASA算法并进行实验。实验在多个数据集上表明,CASA在上下文推荐中优于其他协同过滤算法,UI拆分方法表现出色,但无单一最佳分类方法。
摘要由CSDN通过智能技术生成

 

论文标题:Splitting Approaches for Context-Aware Recommendation:An Empirical Study

论文出处会议期刊):SAC’14

论文时间:2014

 

一、 摘要(翻译论文的摘要)

       用户和项目分类对于上下文推荐系统来就是很常用的方法。执行项目分类方法时,一个已评分的项目在不同的上下文生成多份复制品。用户分类方法执行基于相似的方法。UI splitting是一个结合用户与项目分类的方法,分类用户与项目以提高上下文推荐系统的性能。在这篇论文中,我们针对上述三个方法(CASA)在多个数据集进行实验,而且我们还将它们与其它流行的上下文协同过滤算法(CACF)作比较。为评价这些方法,我们提出一个新的评估指标。实验显示,CASA表现比其它流行的CACF算法更好,但是没有哪一个分类方法显示是最好的。然而

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值