论文:Splitting Approaches for Context-Aware Recommendation:An Empirical Study 总结

原创 2015年03月10日 16:46:04

 

论文标题:Splitting Approaches for Context-Aware Recommendation:An Empirical Study

论文出处会议期刊):SAC’14

论文时间:2014

 

一、 摘要(翻译论文的摘要)

       用户和项目分类对于上下文推荐系统来就是很常用的方法。执行项目分类方法时,一个已评分的项目在不同的上下文生成多份复制品。用户分类方法执行基于相似的方法。UI splitting是一个结合用户与项目分类的方法,分类用户与项目以提高上下文推荐系统的性能。在这篇论文中,我们针对上述三个方法(CASA)在多个数据集进行实验,而且我们还将它们与其它流行的上下文协同过滤算法(CACF)作比较。为评价这些方法,我们提出一个新的评估指标。实验显示,CASA表现比其它流行的CACF算法更好,但是没有哪一个分类方法显示是最好的。然而,我们发现了CASA算法的一些潜在的模式和线索。

二、 相关技术(只写相关算法名称及相关解读参考网址)

1.Impurity criteria(Context-based splitting of item

ratings in collaborative filtering.)

2.Item Splitting(本文提出)

3.User Splitting(本文提出)

4.UI Splitting(本文提出)

 

三、 本文算法(本文提出的算法)

1. 算法1:

1) 名称:Item Splitting

2) 算法步骤:

a) 步骤一:对每一个项目,根据Impurity criteria标准,遍历所有的上下文环境,找出对这一个项目被评分时,在这个上下文评分时,影响最大的,并根据这个上下文条件进行分类,将这个项目分成二个新的项目。

b) 步骤二:重复步骤一,对每一个项目进行分类,得到新的矩阵。

3) 用于解决本文的什么问题:预过滤处理。

2. 算法2:

  1)名称:User Splitting

2)算法步骤:

a) 步骤一:对每一个用户,根据Impurity criteria标准,遍历所有的上下文环境,找出这一个用户评分时,在这个上下文环境中评分时影响最大的,并根据这个上下文条件进行分类,将这个用户分成二个新的用户。

b) 步骤二:重复步骤一,对每一个用户进行分类,得到新的矩阵。

3)用于解决本文的什么问题:预过滤处理。

 

3. 算法3:

1) 名称:UI Splitting

2) 算法步骤:

a) 步骤一:以Impurity criteria作为评价标准,Item Splitting遍历所有的上下文维度,找到最优的将同一个item分成两个的上下文,分离得出新的矩阵

b) 步骤二:再以同样步骤一的方法,根据User Splitting方法分离步骤一中得到的矩阵,得到UI Splitting评分矩阵

3) 用于解决本文的什么问题:预过滤处理。

     

 

四、 实验

1. 实验数据集: 

4) 数据集1:

a) 名称:Food

b) 介绍:未知

c) 来源:未知

5) 数据集2:

a) 名称:Movie

b) 介绍:未知

c) 来源:未知

6) 数据集3:

a) 名称:LDOS-CoMoDa

b) 介绍:(包括数据集是什么类型的,文件结构是如何的等等)

电影类型,文件每一行结构如下:

UserID,itemID,rating,age,sex,city,country,time,daytype,season,location,weather,social,endEmo,dominantEmo,mood,physical,desicion,interaction,director,

movieCountry,movieLanguage,movieYear,genre1,genre2,genre3,actor1,actor2,actor3,budget

c) 来源:

http://212.235.187.145/spletnastran/raziskave/um/comoda/comoda.php

 

  

 

4. 评判标准:

  1)各种评判值的介绍:

预测误差:RMSE

IR矩阵:CPrecision、CRecall

a) 相关公式:

   RMSE:S={[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/N}^0.5(x为平均数,N为样本个数)

 

5. 实验分析(翻译论文部分,提供图表)

(1)分割方法之间的比较

 

表4中,总的来说基于RMSE评估方法,UI splitting方法表现比它两种方法更好。最优的RMSE值是使用UI splitting方法预处理使用MF方法推荐。

(2)CASA与其它算法比较

 


   

基于RMSE评价标准,UI splitting在这些算法中表现最好,而一般地,CASA算法又比其它两个算法表现更好。

论文:The Role of Emotions in Context-aware Recommendation总结

上下文推荐系统尝试利用不同的上下文去适应用户偏好,而且这被证明在很多不同的领域上都能提高推荐的精确性。情绪是最流行的上下文变量,而很少研究人研究情绪是怎样作用在推荐上的——特别是情绪变量的用法除了单单...
  • czzffff
  • czzffff
  • 2015-03-10 16:30:43
  • 400

电影数据集总结:Netflix、MovieLens、LDOS-CoMoDa、AdomMovie

电影数据集总结:包括Netflix、MovieLens、LDOS-CoMoDa、AdomMovie
  • czzffff
  • czzffff
  • 2015-03-10 18:49:48
  • 6800

推荐领域数据集

http://www.grouplens.org/taxonomy/term/14 Movielens Dataset:        其中Movielens-100k和movielens-1M有...
  • dajunxing
  • dajunxing
  • 2016-05-09 23:09:14
  • 3228

电影分类<em>数据</em>

电影<em>数据集</em>总结:Netflix、MovieLens、<em>LDOS-CoMoDa</em>、AdomMovie 推荐系统常用<em>数据集</em> SST<em>数据集</em> IMDB电影<em>数据集</em> 立即<em>下载</em> 上传者: Monkey_mq 时间: 2017-09-21...
  • 2018年04月14日 00:00

推荐系统(1)--splitting approaches for context-aware recommendation

上下文推荐系统中splitting方法的学习与总结。
  • JD_Beatles
  • JD_Beatles
  • 2016-03-28 11:30:32
  • 640

[论文学习]Convolutional matrix factorization for document context-aware recommendation

翻译论文Convolutional matrix factorization for document context-aware recommendation
  • somTian
  • somTian
  • 2017-05-23 20:57:24
  • 1385

movielens推荐<em>数据集</em>

电影分类数据-CSDN<em>下载</em> 时间:2018-4-11电影<em>数据集</em>总结:Netflix、MovieLens、<em>LDOS-CoMoDa</em>、AdomMovie movielens 100k <em>数据集</em> 立即<em>下载</em> 上传者: hsyjq 时间: 2016...
  • 2018年04月14日 00:00

Netflix<em>数据集</em>上的协同过滤算法

电影数据集总结:Netflix、MovieLens、<em>LDOS-CoMoDa</em>、AdomMovie 【分享】Netflix完整竞赛数据集 <em>数据集下载</em>搜集整理版本 电影数据集总结:Netflix、MovieLens、LDOS...
  • 2018年04月14日 00:00

CANE-Context-Aware Network Embedding for Relation Modeling论文学习

2.   CNN 参考网址: https://github.com/Syndrome777/DeepLearningTutorial/blob/master/4_Convoltional_Neur...
  • sparkexpert
  • sparkexpert
  • 2017-05-14 11:16:35
  • 1568

Udacity DEEPLEARNING 学习笔记 L3 CONVOLUTIONAL NEURAL NETWORKS

L3 CONVOLUTIONAL NEURAL NETWORKS
  • somTian
  • somTian
  • 2016-11-13 21:20:38
  • 605
收藏助手
不良信息举报
您举报文章:论文:Splitting Approaches for Context-Aware Recommendation:An Empirical Study 总结
举报原因:
原因补充:

(最多只允许输入30个字)