论文:Splitting Approaches for Context-Aware Recommendation:An Empirical Study 总结

 

论文标题:Splitting Approaches for Context-Aware Recommendation:An Empirical Study

论文出处会议期刊):SAC’14

论文时间:2014

 

一、 摘要(翻译论文的摘要)

       用户和项目分类对于上下文推荐系统来就是很常用的方法。执行项目分类方法时,一个已评分的项目在不同的上下文生成多份复制品。用户分类方法执行基于相似的方法。UI splitting是一个结合用户与项目分类的方法,分类用户与项目以提高上下文推荐系统的性能。在这篇论文中,我们针对上述三个方法(CASA)在多个数据集进行实验,而且我们还将它们与其它流行的上下文协同过滤算法(CACF)作比较。为评价这些方法,我们提出一个新的评估指标。实验显示,CASA表现比其它流行的CACF算法更好,但是没有哪一个分类方法显示是最好的。然而,我们发现了CASA算法的一些潜在的模式和线索。

二、 相关技术(只写相关算法名称及相关解读参考网址)

1.Impurity criteria(Context-based splitting of item

ratings in collaborative filtering.)

2.Item Splitting(本文提出)

3.User Splitting(本文提出)

4.UI Splitting(本文提出)

 

三、 本文算法(本文提出的算法)

1. 算法1:

1) 名称:Item Splitting

2) 算法步骤:

a) 步骤一:对每一个项目,根据Impurity criteria标准,遍历所有的上下文环境,找出对这一个项目被评分时,在这个上下文评分时,影响最大的,并根据这个上下文条件进行分类,将这个项目分成二个新的项目。

b) 步骤二:重复步骤一,对每一个项目进行分类,得到新的矩阵。

3) 用于解决本文的什么问题:预过滤处理。

2. 算法2:

  1)名称:User Splitting

2)算法步骤:

a) 步骤一:对每一个用户,根据Impurity criteria标准,遍历所有的上下文环境,找出这一个用户评分时,在这个上下文环境中评分时影响最大的,并根据这个上下文条件进行分类,将这个用户分成二个新的用户。

b) 步骤二:重复步骤一,对每一个用户进行分类,得到新的矩阵。

3)用于解决本文的什么问题:预过滤处理。

 

3. 算法3:

1) 名称:UI Splitting

2) 算法步骤:

a) 步骤一:以Impurity criteria作为评价标准,Item Splitting遍历所有的上下文维度,找到最优的将同一个item分成两个的上下文,分离得出新的矩阵

b) 步骤二:再以同样步骤一的方法,根据User Splitting方法分离步骤一中得到的矩阵,得到UI Splitting评分矩阵

3) 用于解决本文的什么问题:预过滤处理。

     

 

四、 实验

1. 实验数据集: 

4) 数据集1:

a) 名称:Food

b) 介绍:未知

c) 来源:未知

5) 数据集2:

a) 名称:Movie

b) 介绍:未知

c) 来源:未知

6) 数据集3:

a) 名称:LDOS-CoMoDa

b) 介绍:(包括数据集是什么类型的,文件结构是如何的等等)

电影类型,文件每一行结构如下:

UserID,itemID,rating,age,sex,city,country,time,daytype,season,location,weather,social,endEmo,dominantEmo,mood,physical,desicion,interaction,director,

movieCountry,movieLanguage,movieYear,genre1,genre2,genre3,actor1,actor2,actor3,budget

c) 来源:

http://212.235.187.145/spletnastran/raziskave/um/comoda/comoda.php

 

  

 

4. 评判标准:

  1)各种评判值的介绍:

预测误差:RMSE

IR矩阵:CPrecision、CRecall

a) 相关公式:

   RMSE:S={[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/N}^0.5(x为平均数,N为样本个数)

 

5. 实验分析(翻译论文部分,提供图表)

(1)分割方法之间的比较

 

表4中,总的来说基于RMSE评估方法,UI splitting方法表现比它两种方法更好。最优的RMSE值是使用UI splitting方法预处理使用MF方法推荐。

(2)CASA与其它算法比较

 


   

基于RMSE评价标准,UI splitting在这些算法中表现最好,而一般地,CASA算法又比其它两个算法表现更好。

阅读更多
文章标签: 推荐系统
个人分类: 个人总结
上一篇论文:SoCo: A Social Network Aided Context-Aware Recommender System总结
下一篇论文:Coverage, Redundancy and Size-Awareness in Genre Diversity for Recommender Systems
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭