论文标题:Splitting Approaches for Context-Aware Recommendation:An Empirical Study
论文出处(会议或期刊):SAC’14
论文时间:2014
一、 摘要(翻译论文的摘要)
用户和项目分类对于上下文推荐系统来就是很常用的方法。执行项目分类方法时,一个已评分的项目在不同的上下文生成多份复制品。用户分类方法执行基于相似的方法。UI splitting是一个结合用户与项目分类的方法,分类用户与项目以提高上下文推荐系统的性能。在这篇论文中,我们针对上述三个方法(CASA)在多个数据集进行实验,而且我们还将它们与其它流行的上下文协同过滤算法(CACF)作比较。为评价这些方法,我们提出一个新的评估指标。实验显示,CASA表现比其它流行的CACF算法更好,但是没有哪一个分类方法显示是最好的。然而