在 nn.Sequential 中使用 reshape

pytorch中没有nn.Reshape层,如果想使用 reshape 功能,通常:

class Net(nn.Module):
	def __init__(self):
		super().__init__()
		...
	def forward(self, x):
		...
		h = h.view(-1, 128)
		...

如果要想在 nn.Sequential 中使用 Reshape 功能,可以自定义Reshape层:

class Reshape(nn.Module):
    def __init__(self, *args):
        super(Reshape, self).__init__()
        self.shape = args
    def forward(self, x):
        return x.view((x.size(0),)+self.shape)

然后就可以直接在nn.Sequential中使用Reshape功能了:

nn.Sequential(
	nn.Linear(10, 64*7*7),
	Reshape(64, 7, 7),
	...
	)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大指挥官

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值