PyTorch 分布式训练 DistributedDataParallel 注意事项

本文探讨了使用PyTorch的DDP进行模型训练时遇到的双次前向传播导致的BatchNormalization(BN)层错误,通过实例分析和同步BN转换,提出了解决方案并强调了在分布式训练中处理BN层的重要性。
摘要由CSDN通过智能技术生成

最近写代码,用的pytorch的DDP分布式工具。

发现一个问题,如果在代码中,模型在一次训练中有两次前项传播,如下:

model = Model()
for i, (x1, x2, y) in enumerate(trloader):
	x = x.cuda()
	y = y.cuda()
	p1 = model(x1)
	p2 = model(x2)
	...

程序会爆如下错误:

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [64]] is at version 4; expected version 3 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient. The variable in question was changed in there or anywhere later. Good luck!

检查模型之后,设置所有in_place=False,但是程序还是会爆出上述的错误。

最后发现是BatchNormalization层的问题,把所有的BN层删除之后,问题就不存在了。

最好的处理方法:

model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大指挥官

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值