1.从网上找了代码并运行,因为电脑的原因,只运行了小部分,精确率为56% softmax.py
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 读取数据集
# 建立抽象模型
x = tf.placeholder(tf.float32, [None, 784])
# 占位符,可以补充一个batch所包含的图片数
y = tf.placeholder(tf.float32, [None, 10])
W = tf.Variable(tf.zeros([784, 10]))
#tf.zeros()生成都是0的矩阵
b = tf.Variable(tf.zeros([10]))
a = tf.nn.softmax(tf.matmul(x, W) + b)
#将结果输出成概率的形式
# 定义损失函数和训练方法
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(a), reduction_indices=[1]))
# 损失函数为交叉熵,其中y为真实,a为实验
#tf.reduce_mean()计算平均值,tf.reduce_sum()计算和
optimizer = tf.train.GradientDescentOptimizer(0.5)
# 梯度下降法,学习速率为0.5
train = optimizer.minimize(cross_entropy) # 训练目标:最小化损失函数
# Test trained model
correct_prediction = tf.equal(tf.argmax(a, 1), tf.argmax(y, 1))
#tf.argmax(vector, 1):返回的是vector中的最大值的索引号,
# 如果vector是一个向量,那就返回一个值,如果是一个矩阵,那就返回一个向量,
# 这个向量的每一个维度都是相对应矩阵行的最大值元素的索引号。
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#tf.cast(x,tf.float32)将x转换为后面的格式
# Train
sess = tf.InteractiveSession() # 建立交互式会话
tf.initialize_all_variables().run() #初始化所有变量
for i in range(50):
batch_xs, batch_ys = mnist.train.next_batch(5)
train.run({x: batch_xs, y: batch_ys})
print(sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
#feed_dict的作用是给使用placeholder创建出来的tensor赋值
2.读取MNIST数据集中的图片并显示 out1.py
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#print(mnist.train.images.shape)
#print(mnist.train.labels.shape)
image = mnist.train.images[1,:]
image = image.reshape(28,28)
plt.figure()
plt.imshow(image)
plt.show()
问题
1 没有导入matplotlib库 博文已收藏
https://blog.csdn.net/qq_36652619/article/details/79676579
通过这个安装库
2 qt平台问题 解决 博文已收藏
https://blog.csdn.net/tudianlu9350/article/details/79695372)
通过这个解决问题
https://blog.csdn.net/xiaoxiao133/article/details/79719002
通过这个检验是否成功
3.代码流程为
声明各种参数→定义损失函数,学习率,以及训练目标→比较,定义精确度→建立会话,初始化,循环epoch,训练→打印精确度