免费使用高性能的GPU和TPU—谷歌Colab使用教程

楼主前一阶段在做视频插帧算法应用,鉴于在自己的本子上跑代码是在太慢,又不好意思在跑路后还是用学院的服务器账号,所以翻来覆去学会了在谷歌使用免费的算力进行模型训练和使用。在开始使用前,请您准备自己的Google账号并熟悉Jupyter Notebook的使用

1. Colab简介

什么是 Colab?
借助 Colaboratory(简称 Colab),您可在浏览器中编写和执行 Python 代码:

  1. 无需任何配置
  2. 免费使用 GPU和TPU
  3. 轻松共享

无论您是一名学生、数据科学家还是 AI 研究员,Colab 都能够帮助您更轻松地完成工作。

PS:Colab免费版一次只享有12个小时的使用时间,并且使用期间不能关闭浏览器。如果是富哥,可以开通付费订阅,拥有更高级的处理器,更大的内存和更长的运行时间,并且在浏览器关闭后仍能继续运行代码。

2. 使用准备

2.1 科学上网

Colab是谷歌旗下产品,由于众所周知的原因,谷歌的服务在中国大陆地区不能直接访问,所以请各显神通,楼主就不细说了。

2.2 Google Drive

由于Colab的服务器是共享机制,所以上面的数据和文件在离开Colab十二个小时会自动删除,为了保存我们的代码和数据,我们需要在Colab上挂载谷歌云盘(就是中间那个三角形辣)
在这里插入图片描述
在Google云盘下,新建colab文件夹以放置我们要在colab上运行的文件。并将要运行的工程文件上传到该文件夹下。

在这里插入图片描述在这里插入图片描述

3. Colab 使用

3.1 云硬盘挂载

找到上传的项目文件及,点击右键打开方式,选择关联更多应用。
在这里插入图片描述
搜索Colaboratory,使用Colab打开。
在这里插入图片描述
打开后会自动生成一个.ipynb文件,我们在这个文件里进行命令输入和执行

使用如下命令挂载谷歌云盘,挂载到/content/drive/目录下

from google.colab import drive
drive.mount('/content/drive')

在这里插入图片描述

使用如下命令将当前目录更改到指定的项目文件夹下面,xxx替换为自己的工程文件目录,并展示该目录下的所有文件和目录

import  os
#改变当前工作目录到谷歌云盘的路径
path="/content/drive/MyDrive/colab/xxx/"
os.chdir(path)
os.listdir(path)

3.2 硬件选择

点击代码执行程序,选择更改运行时类型,将运行加速器改为GPU,也可以使用TPU运算,这里不详叙述TPU及其代码框架。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
等到连接成功后,使用!nvidia-smi命令可以查看当前使用的GPU设备,楼主作为白嫖怪好几次分到了Tesla T4(还行)
在这里插入图片描述

3.3 环境配置

Colab已经默认安装了PyTorch的环境,但是有一些其他的环境包需要自己安装。
注意:每次使用Colab前都需要配置环境,因为Colab在用户离开后会清空用户的文件和数据。
例如,使用pip安装FFmpeg

!pip install ffmpeg

3.4 运行程序

使用python命令运行python程序,例如

!python inference_video.py --exp=2 --video=50_2.mp4
### 如何在 Google Colab使用 YOLOv5 的教程 要在 Google Colab 上成功运行训练 YOLOv5 模型,可以按照以下方法操作: #### 下载 YOLOv5 代码库 首先,在 Colab 环境中克隆 YOLOv5 的 GitHub 存储库,并切换到该目录下。这一步可以通过如下命令完成: ```bash !git clone https://github.com/ultralytics/yolov5 %cd yolov5/ ``` 此过程会将整个 YOLOv5 项目复制到当前工作区[^1]。 #### 创建数据集存储路径 接着,在 `yolov5` 文件夹内部创建一个新的子文件夹用于存放自定义的数据集。例如,通过以下命令实现: ```bash mkdir datasets %cd datasets/ ``` 随后可以从网络上获取预处理好的 COCO 数据集或其他目标检测数据集(如 coco128.zip),并通过解压缩使其可用: ```bash !wget https://ultralytics.com/assets/coco128.zip !unzip -q coco128.zip ``` 上述步骤确保了所需数据被正确加载至指定位置以便后续调用。 #### 配置环境与依赖项安装 为了使 YOLOv5 能够正常运作于 Colab 平台之上,则需先满足其所有的软件包需求。通常情况下只需执行一次即可完成全部必要的设置动作: ```bash !pip install -r requirements.txt ``` 这条指令读取由官方维护的需求列表并自动解决所有必需品版本冲突等问题[^2]。 #### 开始模型训练流程 当一切准备就绪后就可以启动实际的训练环节啦!这里展示了一个简单的例子来说明如何利用默认参数针对特定任务进行学习调整: ```python from IPython.display import Image, clear_output clear_output() print('Training Done.') # 进入 yolov5 目录 %cd /content/yolov5/ # 执行训练脚本 !python train.py --img 640 --batch 16 --epochs 50 --data ../custom_dataset/data.yaml \ --cfg ./models/yolov5s.yaml --weights '' --name custom_training_results ``` 注意替换其中涉及的具体配置文件路径以及权重初始化选项等内容以适配个人情况下的不同需求[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ace2NoU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值