DeepSeek使用教程--让DeepSeek生成精准题库


想让DeepSeek出好题,关键在于提示词的设计。总结了一个基本模板:

    请帮我生成一套关于[学科/知识点]的题目,包括[题型],难度为[简单/中等/困难],适合[年级/学习阶段]的学生,总共[数量]道题。每道题请提供详细解析和参考答案。
举个栗子,如果你想生成高中物理力学的题目:

    请帮我生成一套关于高中物理力学的题目,包括选择题和计算题,难度为中等偏难,适合高二学生,总共10道题。每道题请提供详细解析和参考答案。
🔔 温馨提示:如果想让题目更贴近实际考试,可以告诉AI参考某个特定考试的风格,比如"参考高考物理试题风格"。

难度精准控制的秘密武器
一般来说,直接说"简单"、"中等"、"困难"就能让AI明白你的意思。但我发现一个更骚的操作,用具体的百分比来表示难度,效果更精准!

比如你可以这样说:

    请生成5道数学题,难度分布为:20%基础题,60%中等难度,20%挑战题
这样AI就能按照你要求的比例分配不同难度的题目,特别适合模拟真实考试的难度分布。

有次我用这招给我侄子做了套模拟题,他老师还以为是从什么权威题库里选的呢!哈哈~

自定义题型和格式
除了难度,题型也可以灵活定制。看看这个例子:

    # 定义题型要求
    题型要求 = {
        "选择题": 5,
        "填空题": 3,
        "简答题": 2,
        "计算题": 2
    }

    # 在提示词中使用
    提示词 = f"请帮我生成一套数学试卷,包含{题型要求}中指定的题型和数量"
当然这只是个比喻,实际上你直接告诉DeepSeek就行,不用写代码。

特别爽的是,你还可以让AI按照特定的格式输出题目,比如符合Word试卷的排版格式,或者制作成可导入题库系统的格式。

如何验证题目质量
生成题目容易,但质量咋样?这个问题很关键。

我的小技巧是让AI先生成题目,然后再让它扮演"资深教师"或"专业出题人"角色来评价这些题目的质量和难度是否符合要求。

    请以资深[学科]教师的视角,评价我刚才生成的这套题目。分析每道题的知识点覆盖情况、难度是否符合预期,以及是否存在出题不规范的地方。
通过这种"AI审题"的方式,能快速发现题目中的问题并改进。我有次发现AI生成的一道物理题计算过程不够合理,立马让它修改了。

另外,用不同的提示词多生成几套,然后挑选最好的题目组合起来,这样最终题库质量会更高。

批量生成与分类整理
如果你需要大量题目,比如备课用的题库,可以这样:

    请帮我生成100道关于[主题]的题目,并按照以下分类整理:
    1. 按知识点分类
    2. 按难度分类(简单/中等/困难)
    3. 按题型分类(选择/填空/计算等)
AI会自动帮你把题目分门别类,超级方便查找和使用。

不过要记得,一次生成太多题目可能会有点卡顿,最好分批次来,每次20-30道,然后让AI帮你整合。

### 使用 DeepSeek 建立个人本地数学题库 DeepSeek 是一种强大的工具,可以用于构建和管理各种类型的数据库,包括数学题库。以下是具体实现方法: #### 1. 安装 DeepSeek 和相关依赖项 首先需要安装 DeepSeek 平台及其必要的依赖包。通常可以通过 pip 或者 conda 来完成这一操作。 ```bash pip install deepseek ``` #### 2. 创建项目结构 定义项目的文件夹结构来组织数据集和其他资源文件。建议按照如下方式设置目录树形结构: ``` my_math_db/ ├── data/ │ └── math_problems.jsonl # 数学题目 JSON Lines 文件 └── scripts/ ├── preprocess.py # 数据预处理脚本 └── index_builder.py # 构建索引脚本 ``` #### 3. 准备数据源 收集并整理好数学题目作为初始输入材料。这些题目应该被转换成适合机器读取的形式,比如每条记录保存在一个单独的行内,并采用标准格式化后的JSON对象表示法(即 `.jsonl` 文件)。每个 JSON 对象可能包含字段如 `id`, `question_text`, `answer_options`, `correct_answer` 等等[^1]。 #### 4. 预处理数据 编写 Python 脚本来清洗、标准化以及增强原始数据的质量。这一步骤涉及去除噪声字符、统一编码风格、补充缺失信息等工作。对于多选题而言,还可以考虑增加选项随机排列的功能以提高练习效果的真实感。 #### 5. 初始化 DeepSeek 实例并之交互 启动一个新的 DeepSeek 应用程序实例,并通过 API 接口上传经过前序步骤准备好的数据集。利用所提供的 SDK 方法能够方便快捷地执行此过程。 ```python from deepseek import Client, Dataset client = Client() dataset = Dataset(client) with open('data/math_problems.jsonl', 'r') as f: lines = f.readlines() for line in lines: problem_data = json.loads(line.strip()) dataset.add_item(problem_data) dataset.commit() # 提交更改至服务器端 ``` #### 6. 构建检索模型和服务接口 基于已有的高质量标注样本训练合适的自然语言理解 (NLU) 模型,以便支持后续查询请求时提供精准的回答推荐服务。考虑到 bge-m3 的特性——其仅能生成固定维度(例如1024维)[^2]的嵌入向量,在选择相似度计算策略方面需特别注意适应这一点。最后部署 RESTful Web Service 或 GraphQL Endpoint 方便外部调用访问。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

d3soft

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值