图生成模型:传统方法与深度生成模型解析
1. 传统图生成方法
传统的图生成方法主要包括随机图(ER)模型、随机块模型(SBM)和优先连接(PA)模型,这些方法能够生成具有特定属性的合成图,帮助我们理解现实世界中某些图结构的形成方式。
1.1 随机块模型(SBM)
SBM 的关键创新在于可以控制不同块内和块间的边概率,从而生成具有社区结构的图。具体而言,对于每对节点 (u \in C_i) 和 (v \in C_j),我们根据 (P(A[u, v] = 1) = C[i, j]) 来采样边。常见的做法是在 (C) 矩阵的对角线上设置常数 (\alpha),即 (C[i, i] = \alpha);在非对角线上设置另一个常数 (\beta < \alpha),即 (C[i, j] = \beta)((i \neq j))。这样,同一社区内的节点之间有 (\alpha) 的概率存在边,不同社区的节点之间有 (\beta) 的概率存在边。
| 矩阵位置 | 概率值 | 含义 |
|---|---|---|
| 对角线 (C[i, i]) | (\alpha) | 同一社区内节点间有边的概率 |
| 非对角线 (C[i, j])((i \neq j)) | (\beta) | 不同社区间节点有边的概率 |
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



