【POJ 3233】矩阵快速幂+二分求等比数列前N项和

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=20851#overview

开了一套矩阵和高斯消元方面的题。

POJ3233这题给一个矩阵A,然后求(A+A^2+A^3+……+A^k)%m

一看到这个首先想到的是等比数列求和,但是矩阵不能除,所以要考虑另一种方案。

把这个矩阵拆成两个部分,就是(A+A^2+A^3+……+A^(k/2))+A^(k/2)*(A+A^2+A^3+……+A^(k/2)),这样就可以对(A+A^2+A^3+……+A^(k/2))进行递归计算。如果k是奇数就再+A^k。

这个方法也可以用于等比数列前N项和取模问题,如果要用等比数列前N项和公式的话要涉及求逆元或者卢卡斯定理等比较麻烦的问题,不如采用二分法来得简单。

matrix expmod(matrix a,int n)//快速幂
{
	e.init();
	while (n)
	{
		if(n & 1) e=e*a;
		a=a*a;
		n>>=1;
	}
	return e;
}
matrix solve(int k)//二分
{
	if(k==1) return a;
	c=solve(k>>1);
	matrix ans=c+c*expmod(a,(k>>1));
	if(k & 1) ans=ans+expmod(a,k);
	return ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值