“小霸王学习机”再现?树莓派400正式发布,售价70美元

整理 | 高卫华

出品 | AI科技大本营

头图 |  CSDN 下载自视觉中国

11月2日,树莓派 4 的制造商正式推出了树莓派 400,这是一款集成了 4GB 内存树莓派 4 的紧凑型键盘。

有了树莓派 400,只需使用其两个微型HDMI端口之一,将其插入电视或显示器,插入microSD卡,连接电源线和鼠标,就可以拥有一台可用于编程、上网、看视频等日常事务的计算机。

尽管树莓派的小型计算机已成为业余爱好者使用的流行工具,从建造低成本的AirPlay接收器到自动化智能家居应有尽有,但其核心是设计为可访问的计算机。

树莓派的创始人Eben Upton表示,“树莓派的梦想始终是吸引人们购买PC,然后诱使他们成为程序员。

Eben Upton谈到,去年他们发布了没有内置计算机的标准键盘,后受到PC制造商Acorn Computers使用其独立键盘作为Acorn Atom计算机基础的启发,在独立键盘内部设空白空间,供树莓派 400内部放置。

树莓派 400和树莓派 4都具有两个HDMI输出,这两台显示器是许多企业用户的默认设置,并且已有公司将树莓派 400用作企业台式机或呼叫中心代理。Eben Upton表示,树莓派 400不仅可以帮助儿童学习编程,而且可以帮到使用计算机的所有人,甚至企业。

对于除手机和平板电脑以外的设备来说,处理器的功耗太低。因此,在办公室里使用基于ARM的计算机不切实际。

但Upton认为,苹果即将推出的交换机是真正“验证”ARM在PC架构的地位,这证明PC不再是x86处理器的代名词。从长远来看,这一变化将激励更多的开发人员开发或优化软件,使其更好地运行在ARM上。

树莓派 400售价70美元,即日起便可以作为独立机器来使用,而且它的键盘足够大。对于许多人,尤其是学生来说,树莓派 400可以满足在家里来学习或工作的需求。

树莓派 400 的设计灵感来自 20 世纪 80 年代的家用电脑,如 BBC Micro、ZX Spectrum 和 Commodore Amiga,它们的主板内置在键盘中。

除键盘和外观之外,树莓派 400与树莓派 4很相似。树莓派 400拥有四核1.8GHz ARM Cortex-A72 CPU、4GB RAM、千兆以太网、蓝牙5.0和802.11ac Wi-Fi。

树莓派 400由USB-C端口来提供电源,其微型HDMI端口可输出高达4K / 60Hz的信号。此外,树莓派 400还有两个USB 3.0端口和一个USB 2.0端口,通过microSD卡插槽来存储,可使用GPIO端口连接其他小众设备。

在树莓派 400的机器顶部,可以看到树莓派 400的USB、HDMI及以太网等不同端口。 

该键盘设计与大多数紧凑型笔记本电脑键盘相似,几乎所有的笔记本电脑用户都可以迅速熟悉树莓派 400的键盘布局。根据购买地区的不同,树莓派 400的计算机内置于78键或79键键盘中。

Eben Upton称,树莓派 400将会发布英国、美国、德语、法国、意大利和西班牙这六种不同的键盘布局版本,之后还会推出挪威、瑞典、丹麦、葡萄牙和日本的版本。

目前,树莓派 400独立版已在英国、美国、法国和德国上市,下周将在意大利和西班牙上市,并将于今年年底在印度、澳大利亚和新西兰发行。

同时,树莓派 400也可以与鼠标、电源、microSD卡、HDMI电缆和初学者指南捆绑购买,价格为100美元。售价100美元的树莓派 400工具包现已在英国、美国和法国上市,下周将在意大利、德国和西班牙上市。

原文链接:

https://www.raspberrypi.org/blog/raspberry-pi-400-the-70-desktop-pc/

https://www.theverge.com/2020/11/2/21542278/raspberry-pi-400-keyboard-computer-arm-release-date-news-features?scrolla=5eb6d68b7fedc32c19ef33b4

更多精彩推荐

比赛需要故只开源了粗劣的第一个版本demo实现,第二版本改进使用yoloV3模型进行垃圾分类检测,机器臂分拣垃圾,垃圾分类数据集重新收集,并有微信小程序的用户查询垃圾分类及反馈机制 注意看ReadMe文件,注意看ReadMe文件,注意看ReadMe文件 B站视频介绍地址:https://www.bilibili.com/video/av80830870 交流群:1074171553 题主双非师范院校2021考研狗,如果你觉得这个小项目有帮助到你,请为项目点一个star,不管是考试型选手毕设项目被迫营业还是直接拿去二开参加比赛,这些都没问题,开源项目就是人人为我我为人人,但请尊重他人劳动成果,大家都是同龄人.心上无垢,林间有风. 材料清单 树莓派 1个 pca9685 16路舵机驱动板 1个 7寸可触摸显示屏一个 MG996R 舵机4个 垃圾桶4个 usb免驱动摄像头1个 树莓派GPIO扩展板转接线柱1个 硅胶航模导线若干 环境需求 1.开发环境 神经网络搭建—python 依赖 tensorflow,keras 训练图片来源华为云2019垃圾分类大赛提供 训练图片地址:https://developer.huaweicloud.com/hero/forum.php?mod=viewthread&tid=24106 下载图片文件后将文件解压覆盖为 garbage_classify 放入 垃圾分类-本地训练/根目录 神经网络开源模型--- resnet50 models 目录需要手动下载resnet50 的模型文件放入 resnet50模型文件名:resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 百度就可以找到下载放入即可:https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 2.运行开发环境 进入 "垃圾分类-本地训练"目录 环境初始化 python3 安装框架flaskpip3 install flask 安装tensorflow,keras等依赖 pip3 install tensorflow==1.13.1 pip3 install keras==2.3.1 运行 1.命令python3 train.py开启训练 2.命令python3 predict_local.py开启输入图片测试 3. 训练服务模型部署 进入 "垃圾分类-服务部署"目录 output_model 目录存放的是本地训练完成导出的h5模型文件 models 目录需要手动下载resnet50 的模型文件放入 resnet50模型文件名:resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 百度就可以找到下载放入即可:https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5 环境初始化 安装框架flaskpip3 install flask 安装tensorflow,keras等依赖 pip3 install tensorflow==1.13.1 pip3 install keras==2.3.1 运行 1.命令python3 run.py开启窗口本地调试 2.命令python3 flask_sever.py开启服务部署 3.命令sh ./start.sh开启后台运行服务部署 4.树莓派界面搭建 基于nodejs electron-vue 强烈建议使用cnpm来安装nodejs库 进入 "树莓派端/garbage_desktop"目录 安装依赖 cnpm install 开发模式 cnpm run dev 打包发布 cnpm run build 5.树莓派端flask-api接口操作硬件 进入"进入 "树莓派端/garbage_app_sever"目录" 注意树莓派应该开启I2C,确保pca9685 I2C方式接入后可显示地址 命令:i2cdetect -y 1 查看 地址项 0x40是否已经接入树莓派 运行 python3 app_sever.py 或者 sh start.sh 启动 若提示缺少依赖: pip3 install adafruit-pca9685 pip3 install flask
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值