作者 | 俊欣
来源 | 关于数据分析与可视化
今天小编整理归纳了2021年Github
上面最受欢迎的30个Python
项目,帮助大家在打磨技术与提升自我上面更进一步。
通过代码来获取
Github
官网有开源的接口,因此数据的获取也就方便了许多,代码如下
url = 'https://api.github.com/search/repositories?q=language:python&sort=stars&order=desc'
res = requests.get(url)
res_dict = res.json()
repos = res_dict['items']
我们整理到Pandas
中的DataFrame
数据集当中去,代码如下
repo_df = pd.DataFrame(repos)
repo_df = repo_df[['name', 'full_name', 'html_url', 'created_at', 'stargazers_count', 'watchers', 'forks', 'open_issues']]
repo_df['created_at'] = pd.to_datetime(repo_df['created_at'])
repo_df['created_year'] = repo_df['created_at'].dt.year
repo_df['years_on_github'] = 2022 - repo_df['created_at'].dt.year
repo_df.head()
output
上面出来的结果包括了Python
项目的项目名称、项目链接、创建的时间以及点赞的数量和拷贝的数量等等,我们可以根据一定的指标来进行排序,例如根据“点赞”以及“查阅”等指标依次从高到低来进行排序
repo_df.sort_values(by = ["stargazers_count", "watchers"], ascending = False).head(10)
output
当然我们也可以根据"forks"这个指标来进行排序
repo_df.sort_values(by = "forks", ascending = False).head(10)
output
下面小编就带大家罗列几个在Github
上面受欢迎的Python
项目
Python-cheatsheet
当中集合了Python
编程的语法以及各种数据类型的内置方法,Python
编程的初学者倒是可以多看看里面的内容,项目地址
https://github.com/gto76/python-cheatsheet
面试内推项目
当中包含了国内几乎所有的互联网大厂的面经和答案,项目地址:
https://github.com/0voice/interview_internal_reference
Python-100-Days
100天的时间完成从Python
新手小白到大师的进阶,项目地址:
https://github.com/jackfrued/Python-100-Days
Rich
Python
当中的Rich
库,可以为你在终端中提供富文本和漂亮、精美的格式,它可以绘制漂亮的表格、进度条、markdown
,突出显示语法的源代码及回溯等等,优秀的功能有很多
项目地址:
https://github.com/Textualize/rich
Python Web
开发
说到Python
的Web
开发,Flask
以及Django
这两个框架被广泛地应用到了实际工作当中。
Flask
项目地址:https://github.com/pallets/flaskDjango
项目地址:https://github.com/django/django
在Github
当中也是收获了相当数量的点赞与拷贝
当然还有fastapi
框架,项目地址:
https://github.com/tiangolo/fastapi
Scrapy
主要是用Python写的大规模的数据抓取的框架,项目地址
https://github.com/scrapy/scrapy
点赞量达到42.5K,拷贝的量有9.5K
人工智能
要是对深度学习和机器学习感兴趣的童鞋,可以去看这两个项目,
keras,项目地址是:https://github.com/keras-team/keras
models,项目地址是:https://github.com/tensorflow/models
它们分别用到了keras
模块以及tensorflow
框架来进行模型的训练与优化,而这两个框架正在被越来越多的算法工程师们接受与使用。
transformers
项目地址:
https://github.com/huggingface/transformers
收获了57.4K的点赞量以及13.6K的拷贝,该项目主要是将一些已经训练好的模型运用在一些实际项目当中,包括自然语言处理当中的例如翻译、问答挑战,以及计算机视觉任务当中的图像识别、物体检测等等。
人脸识别项目
项目地址:
https://github.com/ageitgey/face_recognition
收获了42.9K的点赞以及11.9K的拷贝,包含了与人脸识别相关的一系列功能。
openpilot
项目
项目地址:
https://github.com/commaai/openpilot
收获了32.2K的点赞以及6K的拷贝数量,该项目是一个开源的辅助驾驶系统,并且支持150+种汽车,包括我们耳熟能详的奥迪、雷克萨斯、丰田、起亚、本田等车。
深度学习论文集合
项目地址:
https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
收获了31.6K的点赞以及6.8K的拷贝数量,当中集合了一系列深度学习的优秀论文与书籍,对此感兴趣的童鞋可以根据链接前往阅读
往
期
回
顾
技术
资讯
技术
资讯
分享
点收藏
点点赞
点在看