Github 年度最受欢迎的 TOP30 Python 项目,超值

c4bade4b8144eef6bb1d62276cc9f317.gif

作者 | 俊欣

来源 | 关于数据分析与可视化

今天小编整理归纳了2021年Github上面最受欢迎的30个Python项目,帮助大家在打磨技术与提升自我上面更进一步。

通过代码来获取

Github官网有开源的接口,因此数据的获取也就方便了许多,代码如下

url = 'https://api.github.com/search/repositories?q=language:python&sort=stars&order=desc'
res = requests.get(url)
res_dict = res.json()
repos = res_dict['items']

我们整理到Pandas中的DataFrame数据集当中去,代码如下

repo_df = pd.DataFrame(repos)
repo_df = repo_df[['name', 'full_name', 'html_url', 'created_at', 'stargazers_count', 'watchers', 'forks', 'open_issues']]
repo_df['created_at'] = pd.to_datetime(repo_df['created_at'])
repo_df['created_year'] = repo_df['created_at'].dt.year
repo_df['years_on_github'] = 2022 - repo_df['created_at'].dt.year
repo_df.head()

output

bb67ffc1107d2799c2d96bc794b2f7c1.png

上面出来的结果包括了Python项目的项目名称、项目链接、创建的时间以及点赞的数量和拷贝的数量等等,我们可以根据一定的指标来进行排序,例如根据“点赞”以及“查阅”等指标依次从高到低来进行排序

repo_df.sort_values(by = ["stargazers_count", "watchers"], ascending = False).head(10)

output

b73d0f2d776759809f070ad979c6f923.png

当然我们也可以根据"forks"这个指标来进行排序

repo_df.sort_values(by = "forks", ascending = False).head(10)

output

efd339f1fc5c08d530105a99aae2f0c5.png

下面小编就带大家罗列几个在Github上面受欢迎的Python项目

Python-cheatsheet

当中集合了Python编程的语法以及各种数据类型的内置方法,Python编程的初学者倒是可以多看看里面的内容,项目地址

https://github.com/gto76/python-cheatsheet

面试内推项目

当中包含了国内几乎所有的互联网大厂的面经和答案,项目地址:

https://github.com/0voice/interview_internal_reference

Python-100-Days

100天的时间完成从Python新手小白到大师的进阶,项目地址:

https://github.com/jackfrued/Python-100-Days

Rich

Python当中的Rich库,可以为你在终端中提供富文本和漂亮、精美的格式,它可以绘制漂亮的表格、进度条、markdown,突出显示语法的源代码及回溯等等,优秀的功能有很多

项目地址:

https://github.com/Textualize/rich

ecf3bbb9e2546f67dfe2772f30ccc61d.png

Python Web开发

说到PythonWeb开发,Flask以及Django这两个框架被广泛地应用到了实际工作当中。

  • Flask项目地址:https://github.com/pallets/flask

  • Django项目地址:https://github.com/django/django

Github当中也是收获了相当数量的点赞与拷贝

当然还有fastapi框架,项目地址:

https://github.com/tiangolo/fastapi

Scrapy

主要是用Python写的大规模的数据抓取的框架,项目地址

https://github.com/scrapy/scrapy

点赞量达到42.5K,拷贝的量有9.5K

人工智能

要是对深度学习和机器学习感兴趣的童鞋,可以去看这两个项目,

  • keras,项目地址是:https://github.com/keras-team/keras

  • models,项目地址是:https://github.com/tensorflow/models

它们分别用到了keras模块以及tensorflow框架来进行模型的训练与优化,而这两个框架正在被越来越多的算法工程师们接受与使用。

transformers

项目地址:

https://github.com/huggingface/transformers

收获了57.4K的点赞量以及13.6K的拷贝,该项目主要是将一些已经训练好的模型运用在一些实际项目当中,包括自然语言处理当中的例如翻译、问答挑战,以及计算机视觉任务当中的图像识别、物体检测等等。

人脸识别项目

项目地址:

https://github.com/ageitgey/face_recognition

收获了42.9K的点赞以及11.9K的拷贝,包含了与人脸识别相关的一系列功能。

97c98938889f7a230c7f0d3a0fe8042b.gif

openpilot项目

项目地址:

https://github.com/commaai/openpilot

收获了32.2K的点赞以及6K的拷贝数量,该项目是一个开源的辅助驾驶系统,并且支持150+种汽车,包括我们耳熟能详的奥迪、雷克萨斯、丰田、起亚、本田等车。

ea56275ed5484e9cc620fae7d05dc346.png

深度学习论文集合

项目地址:

https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap

收获了31.6K的点赞以及6.8K的拷贝数量,当中集合了一系列深度学习的优秀论文与书籍,对此感兴趣的童鞋可以根据链接前往阅读

edf1de44099884f26d111e65430af80d.gif

技术

100行python代码制作鞭炮

资讯

大型模型语言能够理解吗?

技术

创意十足的Python命令行工具

资讯

游戏圈地震级消息,微软收购动视暴雪

9717af9643d01312d43959d082bc2d09.png

分享

fbd30be9408ab80dfd4a1780b1a871c2.png

点收藏

652b95c1466f76e5a103613f377106bc.png

点点赞

444ca1a92ad6bfe2b9dbcb42ad68f32c.png

点在看

### 回答1: 在Github上,有许多受欢迎深度学习开源项目。以下是其中一些备受欢迎深度学习开源项目: 1. TensorFlow:由Google开发的机器学习库,广泛用于深度学习任务。 2. PyTorch:由Facebook开发的深度学习框架,提供动态计算图和丰富的功能。 3. Keras:一个高级神经网络API,可以运行在多个深度学习框架上,如TensorFlow和Theano。 4. Caffe:一个高效的深度学习框架,以速度和模型表达能力著称。 5. MXNet:一个高度可扩展的深度学习框架,支持分布式训练和多种编程语言。 6. Theano:一个基于Python的开源库,用于定义、优化和评估数学表达式,特别适用于深度学习。 7. scikit-learn:一个用于机器学习和数据挖掘的Python库,包含了许多经典的机器学习算法。 8. Darknet:一个轻量级的深度学习框架,特别适用于物体检测和图像分类任务。 9. Caffe2:Facebook开发的深度学习框架,具有高效的分布式训练能力。 10. Torch:一个科学计算框架,提供了丰富的工具和库,适用于深度学习任务。 这只是其中一小部分受欢迎深度学习开源项目Github上还有许多其他项目,涵盖了各种深度学习任务和应用领域,供开发者们使用和贡献。 ### 回答2: GitHub上最受欢迎的57个深度学习开源项目是基于其Stars数和社区贡献度的排名,以下是其中一些项目的简介: 1. TensorFlow:由Google开发的深度学习框架,功能强大且广泛应用。 2. PyTorch:Facebook开发的深度学习框架,被广泛用于研究和开发。 3. Keras:用户友好的深度学习库,可以在TensorFlow、Theano等后端运行。 4. Caffe:质量高且快速的深度学习框架,适用于计算机视觉任务。 5. Theano:用于定义、优化和评估数学表达式的Python库,支持高效的机器学习计算。 6. Torch:基于LUA的科学计算框架,广泛用于机器学习。 7. MXNet:适用于分布式、高效的深度学习框架。 8. Fast.ai:构建在PyTorch之上的高级API,使深度学习更易于使用。 9. TensorFlow.js:用于在浏览器上进行机器学习的库。 10. Dlib:用于图像处理和机器学习任务的C++库。 11. DeepSpeech:Mozilla构建的自动语音识别框架。 12. OpenCV:图像处理和计算机视觉的开源库,具有深度学习支持。 13. GANs:生成对抗网络的PyTorch实现,用于生成逼真的图像。 14. TensorFlow Object Detection API:用于目标检测的TensorFlow API。 15. MLBox:一个自动化机器学习工具,用于数据预处理、特征选择、模型选择等。 16. NLP:使用自然语言处理技术的Python库。 17. Autokeras:自动化机器学习库,用于快速构建和部署模型。 18. OpenAI Gym:用于开发和比较强化学习算法的工具包。 19. DeepFace:FaceNet网络的Keras实现,用于人脸识别。 20. StyleTransfer:用于图像风格转换的PyTorch实现。 这只是其中一些受欢迎深度学习项目GitHub上还有许多其他优秀的项目,每个项目都具有不同的特点和应用领域。无论您是初学者还是专业人士,都可以在GitHub上找到适合您需求的项目
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值