赶紧收藏!Github 上 star 数 Top30 的 Python 开源项目

Mybridge AI 推出了一个Python开源项目 Top 30 榜单,包括开源 Python 库、平台系统、开发软件、基建工具等。该榜单基于项目质量、用户参与度以及其他几个方面进行了评估,从大约 15000 个开源项目中挑选了 Top 30。这些项目在 Github 上的平均 Star 为 20K!本文为大家分别介绍,如果大家对哪个开源项目感兴趣,可以访问链接自取!

 No 1:Home-assistant [Github 73.2K Star] 

地址:https://github.com/home-assistant/core

Home Assistant 是一个开源的家庭自动化平台,旨在通过单一界面集中控制各种智能设备。它强调本地控制和隐私,用户可以在本地服务器或树莓派上运行,避免依赖云服务。凭借强大的社区支持和丰富的集成功能,Home Assistant 使用户能够轻松创建自动化和自定义仪表板。

No 2:Pytorch [Github 83.5K Star]

地址:https://github.com/pytorch/pytorch

PyTorch 是一个开源的深度学习框架,以其灵活性和易用性而闻名,特别适合研究和开发。它提供动态计算图,使得模型构建和调试更加直观,适合快速原型开发。PyTorch 拥有强大的社区支持和丰富的生态系统,广泛应用于计算机视觉、自然语言处理等领域。

No 3:Grumpy [Github 10.5K Star]

地址:https://github.com/google/grumpy

Grumpy 是一个开源项目,旨在将 Python 代码转换为 Go 代码,从而允许 Python 应用程序在 Go 运行时中运行。这个项目的主要目标是提高 Python 应用程序的性能和可扩展性,同时利用 Go 的并发特性和静态类型系统。

No 4:Sanic [Github 18.1K Star]

地址:https://github.com/sanic-org/sanic

Sanic 是一个高性能的异步 Python web 框架,专为快速构建 API 和 web 应用而设计。它支持异步请求处理,能够处理大量并发连接,适合需要高吞吐量的应用场景。Sanic 的简洁语法和灵活性使得开发者能够快速上手并高效构建可扩展的网络服务。

No 5:Python-fire [Github 27K Star]

地址:https://github.com/google/python-fire

Python-fire 是一个用于自动生成命令行界面的库,可以将 Python 对象转换为命令行接口(CLI)。它支持简单的参数解析和帮助文档生成,使得开发者可以轻松地创建用户友好的命令行工具。Python-fire 的设计目标是提高开发效率,减少手动编写 CLI 代码的工作量。

No 6:spaCy [Github 30.1K Star]

地址:https://github.com/explosion/spaCy

spaCy 是一个开源的自然语言处理(NLP)库,专为工业级应用而设计,提供高效的文本处理功能。它支持多种语言,具备强大的特征提取、词性标注、命名实体识别和依存句法分析等功能。spaCy 的易用性和速度使其成为学术研究和商业应用中广泛使用的工具。

No 7:Pipenv [Github 24.9K Star]

地址:https://github.com/pypa/pipenv

Pipenv 是一个用于管理 Python 项目依赖和虚拟环境的工具,旨在简化包管理和环境配置。它结合了 Pipfile 和 Pipfile.lock,提供了更清晰的依赖管理,并确保项目在不同环境中的一致性。通过自动创建和管理虚拟环境,Pipenv 使得开发者能够专注于代码,而无需担心依赖冲突和环境设置。

No 8:MicroPython [Github 19.3K Star]

地址:https://github.com/micropython/micropython

MicroPython 是一个精简的 Python 3 实现,专为微控制器和嵌入式系统设计。它允许开发者使用 Python 编写高效的代码,以控制硬件和执行各种任务,适用于物联网(IoT)设备和其他资源受限的环境。MicroPython 提供了对多种硬件平台的支持,并拥有丰富的库,使得嵌入式开发变得更加简便和灵活。

No 9:Prophet [Github 18.4K Star]

地址:https://github.com/facebook/prophet

Prophet 是一个开源的时间序列预测工具,由 Facebook 开发,旨在提供简单易用的预测模型。它特别适合处理具有季节性和假期效应的时间序列数据,能够自动识别趋势变化和季节性模式。Prophet 的设计使得非专家用户也能快速生成高质量的预测,并可通过简单的参数调整来优化模型表现。

No 10:Serpent AI [Github 6.8K Star]

地址:https://github.com/SerpentAI/SerpentAI

Serpent AI 是一个开源的人工智能框架,专注于游戏和应用程序的自动化和智能控制。它利用深度学习和计算机视觉技术,使得用户能够创建智能代理来执行游戏内的任务和决策。Serpent AI 提供了易于使用的接口和工具,帮助开发者快速构建和训练自定义的 AI 代理,以提升游戏体验和测试效率。

No 11:Dash [Github 21.4K Star]

地址:https://github.com/plotly/dash

Dash 是一个开源的 Python 框架,用于构建交互式的 web 应用程序,特别适合数据可视化和分析。它基于 Flask 和 React,允许用户使用简单的 Python 代码创建动态的仪表板和数据应用,而无需深入了解前端开发。Dash 提供了丰富的组件和布局选项,使得数据科学家和分析师能够轻松展示和共享他们的分析结果。

No 12:InstaPy [Github 16.8K Star]

地址:https://github.com/InstaPy/InstaPy

InstaPy 是一个开源的自动化工具,用于管理和优化 Instagram 账户的活动。它允许用户通过编写简单的 Python 脚本来自动执行如关注、点赞和评论等操作,从而提高账户的可见性和互动率。InstaPy 提供了灵活的配置选项,使用户能够根据自己的需求定制自动化策略,帮助他们有效地增长社交媒体影响力。

No 13:Apistar [Github 5.6K Star]

地址:https://github.com/encode/apistar

Apistar 是一个轻量级的 Python Web 框架,旨在简化 API 的构建和开发过程。它采用了现代的设计理念,支持基于声明的路由和类型注解,使得开发者能够快速创建高性能的 RESTful API。Apistar 还内置了强大的数据验证和序列化功能,适合用于构建可扩展的应用程序。

No 14:Faiss [Github 31.2K Star]

地址:https://github.com/facebookresearch/faiss

Faiss 是一个由 Facebook AI Research 开发的开源库,用于高效的相似性搜索和密集向量的聚类。它特别适合处理大规模数据集,提供了多种索引结构和算法,以快速查找高维空间中的最近邻。Faiss 支持 GPU 加速,极大地提高了计算性能,广泛应用于推荐系统、图像检索和自然语言处理等领域。

No 15:MechanicalSoup [Github 4.7K Star]

地址:https://github.com/MechanicalSoup/MechanicalSoup

MechanicalSoup 是一个基于 Python 的库,用于简化网页抓取和自动化表单提交的过程。它结合了 Beautiful Soup 的解析能力和 Requests 的网络请求功能,使得用户能够轻松地模拟浏览器行为,提取网页内容。MechanicalSoup 适合用于数据抓取、网站测试和自动化任务,特别是在处理需要登录或表单提交的网页时表现出色。

No 16:Better-exceptions [Github 4.6K Star]

地址:https://github.com/Qix-/better-exceptions

Better-exceptions 是一个 Python 库,用于增强标准异常的可读性和调试体验。它通过提供更详细和美观的错误堆栈跟踪信息,帮助开发者更快地定位和解决代码中的问题。该库支持彩色输出和上下文信息,使得调试过程更加直观,适合用于任何 Python 项目。

No 17:Flashtext [Github 5.6K Star]

地址:https://github.com/vi3k6i5/flashtext

Flashtext 是一个高效的文本搜索和替换库,专门用于处理关键词的匹配和替换任务。与传统的正则表达式相比,Flashtext 在处理大量关键词时速度更快,特别适合用于大型文本数据的快速搜索。它支持多种语言,并且可以轻松集成到现有的 Python 应用程序中,广泛应用于文本处理和信息提取领域。

No 18:Maya [Github 3.4K Star]

地址:https://github.com/kennethreitz/maya

Maya 是一个用于处理日期和时间的 Python 库,旨在简化日期时间的操作和计算。它提供了直观的 API,使得日期时间的解析、格式化和时区转换变得更加简单和高效。Maya 还支持自然语言处理,可以轻松理解和处理人类可读的日期表达方式,适合用于各种应用程序的时间管理。

No 19:Mimesis [Github 4.4K Star]

地址:https://github.com/lk-geimfari/mimesis

Mimesis 是一个用于生成伪随机数据的 Python 库,特别适合用于测试和开发。它支持多种数据类型,包括姓名、地址、公司、电子邮件等,并且可以根据不同的地区和语言生成相应的本地化数据。Mimesis 提供了简单易用的 API,使得开发者能够快速生成高质量的虚拟数据,从而提高测试效率和应用的可靠性。

No 20:Open-paperless [Github 2.6K Star]

地址:https://github.com/zhoubear/open-paperless

Open-paperless 是一个开源项目,旨在帮助用户实现无纸化办公,提供文档管理和电子签名功能。该平台支持文件的上传、存储和共享,简化了文档的组织和检索过程。通过集成自动化工作流,Open-paperless 提高了团队协作效率,减少了对纸质文档的依赖,推动了环保和可持续发展。

No 21:Fsociety [Github 10.6K Star]

地址:https://github.com/Manisso/fsociety

Fsociety 是一个开源的渗透测试工具包,灵感来源于电视剧《黑客军团》。它集成了多种网络安全工具,旨在帮助安全研究人员和渗透测试人员进行漏洞评估和网络安全测试。Fsociety 提供了用户友好的界面和易于使用的功能,使得用户能够高效地发现和利用安全漏洞,从而提升系统的安全性。

No 22:LivePython  [Github 2.6K Star]

地址:https://github.com/agermanidis/livepython

LivePython 是一个交互式 Python 代码可视化工具,允许用户在浏览器中实时运行和可视化 Python 代码。它通过动态展示代码执行的结果和变量状态,帮助学习者更好地理解编程概念和代码逻辑。LivePython 特别适合教育和演示场景,使得编程学习更加直观和有趣。

No 23:Hatch   [Github 6K Star]

地址:https://github.com/pypa/hatch

Hatch 是一个现代的 Python 项目管理工具,旨在简化包的创建、构建和发布过程。它支持虚拟环境管理、依赖项管理以及多种构建后端,帮助开发者高效地管理项目生命周期。Hatch 的灵活性和易用性使其成为 Python 开发者在构建和维护项目时的理想选择。

No 24:Tangent [Github 2.3K Star]

地址:https://github.com/google/tangent

Tangent 是一个用于 Python 的自动微分库,专注于高效地计算函数的导数。它通过使用符号和数值方法,支持多种复杂的数学操作,适用于机器学习和优化等领域。Tangent 的设计旨在提高计算性能和易用性,使得用户能够快速集成自动微分功能到他们的项目中。

No 25:Clairvoyant [Github 2.4K Star]

地址:https://github.com/anfederico/Clairvoyant

Clairvoyant 是一个用于 Python 的工具,专注于数据科学和机器学习项目的可视化和分析。它通过提供直观的界面和丰富的可视化功能,帮助用户深入理解数据集和模型性能。Clairvoyant 旨在简化数据探索过程,使数据科学家能够更高效地进行决策和模型优化。

No 26:MonkeyType [Github 4.8K Star]

地址:https://github.com/Instagram/MonkeyType

MonkeyType 是一个用于 Python 的动态类型注解工具,旨在提高代码的可读性和可维护性。它通过分析代码运行时的类型信息,自动生成类型注解,帮助开发者更好地理解和管理代码中的数据类型。MonkeyType 的设计使得在大型项目中添加类型注解变得简单高效,从而提升代码质量和开发效率。

No 27:Eel [Github 6.5K Star]

地址:https://github.com/python-eel/Eel

Eel 是一个轻量级的 Python 框架,用于构建桌面应用程序,利用现代网页技术(如 HTML、CSS 和 JavaScript)来创建用户界面。它允许开发者在 Python 后端与前端之间进行简单的通信,方便地集成前端功能和后端逻辑。Eel 的简单性和灵活性使其成为快速开发跨平台桌面应用的理想选择。

No 28:Surprise  [Github 6.4K Star]

地址:https://github.com/NicolasHug/Surprise

Surprise 是一个用于构建和评估推荐系统的 Python 库,专注于提供简单易用的接口和多种算法选择。它支持协同过滤、矩阵分解和其他推荐技术,允许用户轻松地实现和测试不同的推荐模型。Surprise 的灵活性和功能丰富性使其成为数据科学家和开发者在推荐系统开发中的热门工具。

No 29:Gain  [Github 2K Star]

地址:https://github.com/elliotgao2/gain

Gain 是一个开源的 Python 库,专注于提升机器学习模型的可解释性,特别是在处理复杂数据时。它通过提供特征重要性评分和可视化工具,帮助用户理解模型决策背后的原因,从而增强模型的透明度和信任度。Gain 适用于各种机器学习任务,支持不同类型的模型,使得数据科学家能够更好地分析和优化其模型表现。

No 30:PDFTabExtract  [Github 2.2K Star]

地址:https://github.com/WZBSocialScienceCenter/pdftabextract

PDFTabExtract 是一个开源工具,旨在从 PDF 文件中提取表格数据,简化数据处理流程。它利用 PDF 解析技术,将表格内容转换为易于操作的格式,如 CSV 或 Excel,方便后续数据分析。该工具特别适合需要从大量 PDF 文档中提取结构化信息的研究人员和数据分析师。


如果你喜欢本文,欢迎点赞,并且关注我们的微信公众号:Python技术极客,我们会持续更新分享 Python 开发编程、数据分析、数据挖掘、AI 人工智能、网络爬虫等技术文章!让大家在Python 技术领域持续精进提升,成为更好的自己!

添加作者微信(coder_0101),拉你进入行业技术交流群,进行技术交流~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coder_风逝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值