AI科技大本营

人工智能技术和产业社区

资源 | 我们从8800个机器学习开源项目中精选出Top30,推荐给你

640?wx_fmt=png&wxfrom=5&wx_lazy=1


最近,Mybridge发布了一篇文章,对比了过去一年中机器学习领域大约8800个开源项目后,选出30个2017年度优秀的开源项目,包含机器学习开源库、数据库以及其他应用程序,这些项目差不多都是在2017年1-12月发布。Mybridge AI通过受欢迎度、参与度以及其他方面对开源项目进行评定。


对于机器学习者来说,阅读开源代码并基于代码构建自己的项目,是一个非常有效的学习方法。看看以下这些Github上平均star为3558的开源项目,你错了哪些?


在开始之前,先推荐阅读


A. 神经网络:深度学习 A-ZTM : 亲手搭建人工神经网络(推荐次数68,745 , 4.5/5 stars)


链接:http://bit.ly/2CH1WcQ


0?wx_fmt=jpeg


B. 用Python进行深度学习的TensorFlow的完整指南(推荐次数17,834, 4.6/5 stars)


链接:http://bit.ly/2EatVy7

 

0?wx_fmt=jpeg



接下来是Mybridge精选的Top 30的项目:


1. FastText:快速文本表示和文本分类库(Github上有11786颗星,贡献者Facebook Research)


源码链接:https://github.com/facebookresearch/MUSE 


640?wx_fmt=png


2. Deep-photo-styletransfer:“Deep Photo Style Transfer” 这篇论文的源码和数据。(GitHub 9747颗星,论文来自于康奈尔大学的Fujun Luan)


源码链接:https://github.com/luanfujun/deep-photo-styletransfer

 

640?wx_fmt=png


3. 用Python和命令行来实现的最简单的面部识别API(GitHub 8672颗星,贡献者Adam Geitgey)  


源码链接:https://github.com/ageitgey/face_recognition

 

640?wx_fmt=png



4. Magenta:利用机器智能生成音乐和美术艺术品(GitHub 8113颗星)


源码链接:https://github.com/tensorflow/magenta


640?wx_fmt=png


5. Sonnet:基于TensorFlow的神经网络库(GitHub 573颗星,贡献者是DeepMind的Malcolm Reynolds )


源码链接:https://github.com/deepmind/sonnet



640?wx_fmt=png



6. deeplearn.js: 一个用于Web的硬件加速机器学习库(GitHub 5462颗星,贡献者是Google Brain的Nikhil Thorat)


源码链接:https://github.com/PAIR-code/deeplearnjs


640?wx_fmt=png


7. 基于TensorFlow的快速风格迁移库(GitHub 4843颗星,贡献者是MIT的Logan Engstrom


源码链接:https://github.com/lengstrom/fast-style-transfer

 

640?wx_fmt=png


8. Pysc2: 星际争霸2学习环境(GitHub 3684颗星,贡献者是DeepMind的Timo Ewalds)


源码链接:https://github.com/deepmind/pysc2

 

640?wx_fmt=png

 

9. AirSim: Microsoft AI & Research开源的基于虚幻引擎的开源模拟器,用于自动驾驶(GitHub 3861颗星,贡献者是Microsoft的Shital Shah)


源码链接:https://github.com/Microsoft/AirSim

 

640?wx_fmt=png


10. acets: 机器学习数据集的可视化工具(GitHub 3371颗星,由Google Brain贡献)


源码链接:https://github.com/PAIR-code/facets


640?wx_fmt=png


11. Style2Paints:用AI技术为线稿快速上色的工具(GitHub 3310颗星)


源码链接:https://github.com/lllyasviel/style2paints


640?wx_fmt=png


12. Tensor2Tensor:一个用于广义序列-序列模型的库 - Google Research(GitHub 3087颗星,贡献者是Google Brain的Ryan Sepassi)



源码链接:https://github.com/tensorflow/tensor2tensor


640?wx_fmt=png 


13. 基于Pytorch实现的图片-图片转换(GitHub 2847颗星,贡献者Berkeley的Jun-Yan Zhu, Ph.D)


源码地址:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


 

640?wx_fmt=png

 

14. Faiss:用于密集向量的高效相似性搜索库和聚类的库(GitHub 2629颗星,贡献者Facebook Research)



源码地址:https://github.com/facebookresearch/faiss


640?wx_fmt=png

 

15. Fashion-minist:类似于MNIST的时尚产品数据集(GitHub 2780颗星,贡献者是Zalando Tech的Han Xiao


源码链接:https://github.com/zalandoresearch/fashion-mnist


640?wx_fmt=png

 

16. ParlAI: 一个可用在各种公开可用的对话数据集上训练和评估AI模型的框架(GitHub 2578颗星,贡献者是Facebook 的Alexander Miller)


源码链接:https://github.com/facebookresearch/ParlAI

 

640?wx_fmt=png


17. Fairseq:Facebook AI Research的序列-序列工具包(GitHub 2571颗星)


源码链接:https://github.com/facebookresearch/fairseq

 

640?wx_fmt=png


18. Pyro:基于Python和PyTorch的深度通用概率编程GitHub 2387颗星,贡献者Uber Engineering


源码链接:https://github.com/uber/pyro


640?wx_fmt=png

 

19. iGAN:基于GAN的交互式图像生成(GitHub 2369颗星)


源码地址:https://github.com/junyanz/iGAN



640?wx_fmt=png



20. Deep-image-prior:用神经网络恢复图像(GitHub 2188颗星,贡献者是Skoltech的Dmitry Ulyanov, Ph.D)


源码地址:https://github.com/DmitryUlyanov/deep-image-prior

 

640?wx_fmt=png



21. 人脸分类:基于 Keras CNN 模型与 OpenCV ,使用fer2013/imdb 数据集进行实时面部检测和表情/性别分类(GitHub 1967颗星)


源码地址:https://github.com/oarriaga/face_classification


640?wx_fmt=png

 

22. Speech-to-Text-WaveNet:使用DeepMind的WaveNet和TensorFlow进行端到端句级英语语音识别(GitHub 1961颗星,贡献者是Kakao Brain的Namju Kim)



源码地址:https://github.com/buriburisuri/speech-to-text-wavenet


640?wx_fmt=png

23. StarGAN: 用于多域图像-图像转化的统一生成对抗网络(GitHub 1954颗星,贡献者Korea University的Yunjey Choi)


源码地址:https://github.com/yunjey/StarGAN

 

640?wx_fmt=png


24. MI-agents:Unity机器学习代理(GitHub 1658颗星,贡献者Unity3D的Arthur Juliani)


源码地址:https://github.com/Unity-Technologies/ml-agents

 

640?wx_fmt=png


25. DeepVideoAnalytics:一个分布式可视化搜索和数据分析平台(GitHub 1494颗星,贡献者是Cornell University 的Akshay Bhat)


源码地址:https://github.com/AKSHAYUBHAT/DeepVideoAnalytics

 

640?wx_fmt=png



26. OpenNMT:Torch上的开源神经机器翻译工具包(GitHub 1490颗星)


源码地址:https://github.com/OpenNMT/OpenNMT

 

640?wx_fmt=png 


27. Pix2pixHD: 用条件GAN合成和处理2048×1024的图像(GitHub 1283颗星,贡献者是英伟达科学家 Ming-Yu Liu)


源码地址:https://github.com/NVIDIA/pix2pixHD

 

640?wx_fmt=png


28. Horovod:TensorFlow 布式 训练框架(GitHub 1188 颗星,贡献者来自Uber )



源码地址:https://github.com/uber/horovod


640?wx_fmt=png


29. AI-Blocks: 一个强大而直观的所见即所得界面,可让任何人创建机器学习模型(GitHub 899颗星)


源码地址:https://github.com/MrNothing/AI-Blocks

 

640?wx_fmt=png


30. Tensorflow实现的用于语音风格转换的深度神经网络(GitHub 845颗星,贡献者是Kakao Brain AI团队的Dabi Ahn)


源码地址:https://github.com/andabi/deep-voice-conversion 

640?wx_fmt=png


原文链接:

https://medium.mybridge.co/30-amazing-machine-learning-projects-for-the-past-year-v-2018-b853b8621ac7



资源推荐


AI学习者必备 | 圣母大学公开统计计算课程讲义(视频+PPT+作业)

资源 | 机器学习、NLP、Python和Math最好的150余个教程(建议收藏)

资源 | 盘点GitHub最著名的20个Python机器学习项目

资源 | 做一款炫酷的机器人需要哪些学习资源(机器人资源Awesome系列)

资源 | 2017深度学习优秀论文盘点(建议收藏)

资源 | 想用Python学机器学习?Google大神替你写好了所有的编程示范代码

资源 | 亚马逊 AI 主任科学家李沐:动手学深度学习视频大全

资源 | Yann LeCun最新演讲:大脑是如何高效学习的?(附PPT+视频)

@那些想要转行AI的人:送你一份人工智能入门指南

资源 | 史上最全机器学习笔记

重磅 | 128篇论文,21大领域,深度学习最值得看的资源全在这了

爆款 | Medium上6900个赞的AI学习路线图,让你快速上手机器学习

葵花宝典之机器学习:全网最重要的AI资源都在这里了(大牛,研究机构,视频,博客,书籍,Quora......)

640?wx_fmt=png

☟☟☟ 更多学习资源,请戳“阅读原文”

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/79017769
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

资源 | 我们从8800个机器学习开源项目中精选出Top30,推荐给你

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭