AI科技大本营

人工智能技术和产业社区

AI人才招聘:年薪最高近百万,独角兽公司招算法工程师

640?wx_fmt=jpeg


本栏目由AI科技大本营和科锐福克斯共同打造,将在每周日为大家带来最新的 AI 岗位招聘需求。以下职位均来自互联网独角兽公司,感兴趣的读者请投递简历信息至 68730560@qq.com,或者 QQ/Wechat 咨询:68730560。


AI 算法工程师 - CV 方向(20K-80K)


职位描述:

  • 参与和推动机器学习& CV 技术落地到产品;

  • 包括不限于图像视频分类、视频内容分析、文字检测和识别、场景理解、人脸识别、物体追踪等 。


任职资格:

  • 计算机/数学/统计学/模式识别相关专业,本科以上学历;

  • 熟悉 Linux 平台、Java/Scala/Python/C++ 中一种或多种语言编程;

  • 一年以上图像&视频领域的相关工作&项目经历;

  • 熟悉机器学习的理论基础,有深度学习研发经验,熟悉 tensorflow/caffe/pytorch 优先;

  • 具有良好的沟通能力,和良好的团队合作精神。


音频算法工程师(20K-80K)


职位描述:

  • 负责知识付费产品的音效算法开发和调试;

  • 音频信号处理前沿技术的研究和探索。


岗位要求:

  • 硕士以上学历,计算机技术、信号处理、人工智能、通信信息及其它相关专业;

  • 具备数字信号处理或音视频信号处理的相关理论基础和经验;

  • 熟练掌握 Python,能够快速验证算法原型;

  • 具有较强的中英文技术文献阅读能力。


资深算法工程师(AI)(20K-80K)


职位描述:

  • 对海量的用户数据和内容数据进行分析、处理和挖掘,帮助建立对用户和对内容的深入理解;

  • 构建自然语言处理、内容分析、用户画像等基础的机器学习技术和平台支持的业务发展;

  • 使用机器学习技术改进搜索、推荐、信息流等产品的用户体验;

  • 探索和构建人工智能在知识社交平台中应用的最新业务场景。


任职资格:

  • 3 年及以上工作经验;

  • 对机器学习和数据挖掘技术有比较深入的了解,并进行过相关的实践;

  • 在以下至少一个领域:推荐和搜索、Ranking、自然语言处理、计算机视觉、深度学习等方面有一定的实际工作经验;

  • 有深厚的编程功底,至少熟练掌握 Python/C++/Java/Go 当中的一种编程语言,理解常用的编程模式;

  • 使用过 Hadoop、Spark、MPI 等并行计算平台中的一种或几种,对并行化计算有较深入的认识和理解。


加分项:

  • 有较强的产品 sense,关注产品;有出色的沟通能力,能够独立推动项目进展;

  • 有丰富的 TensorFlow、Caffe 等流行的深度学习框架使用经验的优先。


资深算法工程师(搜索)(20K-80K)


职位描述:

  • 基于海量的用户数据和内容数据,改进搜索质量,并进行搜索新场景的探索、开发和落地,为用户提供卓越的搜索体验;

  • 信息检索领域 2 年及以上工作经验;

  • 对排序算法、语义分析、检索需求理解、Learning to Rank 等领域有比较深入的理解,并在其中一个或多个领域有深厚的实际工作经验积累;

  • 对搜索引擎的架构,如索引构建、检索流程等有深入的了解;

  • 熟悉 Spark、MapReduce 等并行编程模型,有实际的海量数据处理和挖掘的经验;

  • 了解 LR、SVM、GBDT、DNN 等常用的数据挖掘和机器学习算法,并有使用经验。


加分项:

· 使用过 TensorFlow、Caffe 等深度学习框架;

· 拥有日请求量千万级别以上的搜索引擎开发经验。


资深算法工程师 (推荐)(20K-80K)


职位描述:

  • 对海量数据进行挖掘和分析,改善在各个推荐场景(例如,Feed 流、问题推荐、相关推荐、用户推荐、个性化推送)下的用户体验- 具有搜索、推荐或者数据挖掘领域 3 年及以上工作经验;

  • 了解常见的推荐算法,例如 CF、关联规则挖掘、隐含语义分解等,并有利用算法实际改进推荐效果的经验;

  • 理解常用的机器学习模型,例如 LR、SVM、GBDT、神经网络等;

  • 熟悉 Spark、MapReduce 等并行编程模型,有实际的海量数据处理和挖掘的经验;

  • 牢固的计算机基础,对数据结构和算法有比较深入的了解。


加分项:

  • 构建过大型推荐系统,并在复杂业务场景下得到过验证;

  • 拥有基于深度神经网络的推荐算法的使用经验,使用过 TensorFlow、Caffe 等深度学习框架。


资深算法工程师(首页)(20K-80K)


职位描述:

  • 对海量数据进行挖掘和分析,改善各个推荐场景(例如,Feed 流、问题推荐、相关推荐、用户推荐、个性化推送)下的用户体验;

  • 具有搜索、推荐或者数据挖掘领域 3 年及以上工作经验;

  • 了解常见的推荐算法,例如 CF、关联规则挖掘、隐含语义分解等,并有利用算法实际改进推荐效果的经验;

  • 理解常用的机器学习模型,例如 LR、SVM、GBDT、神经网络等;

  • 熟悉 Spark、MapReduce 等并行编程模型,有实际的海量数据处理和挖掘的经验;

  • 牢固的计算机基础,对数据结构和算法有比较深入的了解。


加分项:

  • 构建过大型推荐系统,并在复杂业务场景下得到过验证;

  • 拥有基于深度神经网络的推荐算法的使用经验,使用过 TensorFlow、Caffe 等深度学习框架。


推荐算法 Leader(20K-80K)


职位描述:

  • 负责知识市场个性化推荐算法的持续优化工作;

  • 使用机器学习技术改进知识市场推荐产品的用户体验;

  • 深度学习等算法在知识市场推荐场景的实验和落地应用。


任职资格:

  • 对机器学习和数据挖掘技术有比较深入的了解;

  • 在以下至少一个领域:推荐、搜索、自然语言处理、计算机视觉、深度学习等方面5年以上的实际工作经验(特别优秀者可以3年以上工作经验);

  • 有深厚的编程功底,至少熟练掌握 Python\C++\Java\Go\Scala 当中的一种编程语言;

  • 有负责过较大项目的开发管理经验。


广告算法专家(20K-80K)


职位描述:

  • 带领广告算法团队,在海量数据上建立预测模型,发现用户兴趣和产品机会;

  • 与产品团队一起工作优化智能广告产品的质量;

  • 与基础构架团队一起构建稳定,可扩展的后端服务有深厚的算法背景,理解常用的机器学习和数据挖掘算法;


任职资格:

  • 有广告 CTR 预估、智能推送、ranking、NLP、文本挖掘等方向的实际工程和项目经验;

  • 熟练掌握 C++、Python、Java 等其中的一种或几种编程语言,参与过实际工程项目;

  • 使用过 Hadoop、Spark 等并行计算平台中的一种或几种,对并行化计算有较深入的认识和理解。


加分项:

· 有深度学习等机器学习前沿方向的研究经历;

· 有较强的产品 sense,关注产品;

· 有出色的沟通能力,能带领团队高效完成项目并持续提升技能。


算法工程师(内容质量)(20K-80K)


职位描述:

  • 基于数千万用户数据和高质量的内容数据,建立对用户和对内容的深入理解;

  • 基于 Hadoop、Spark 等高性能计算平台,构建和改进数据挖掘和机器学习算法与技术,支撑业务发展;

  • 以数据挖掘和数据分析为基础,发现新的产品改进点,以数据和技术驱动产品改进,探索新的产品形态;

  • 跟踪业界最新的机器学习算法和研究趋势,并尝试将其应用于实际的生产环境;

  • 扎实的计算机基本功,对计算机算法有深入的理解;

  • 熟练掌握 C++、Python、Java 等其中的一种或几种编程语言,参与过实际工程项目,理解基本的编程模式;

  • 使用过 Hadoop、Spark、MPI 等并行计算平台中的一种或几种,对并行化计算有较深入的认识和理解;

  • 理解常用的机器学习和数据挖掘算法,并进行过相关的实践。


加分项:

  • 有推荐、Ranking、NLP、文本挖掘等方向的实际工程和项目经验;

  • 有深度学习等机器学习前沿方向的研究经历;

  • 有较强的产品 sense,关注产品;

  • 有出色的沟通能力,能够独立推动项目进展。


NLP 算法开发工程师(20K-80K)


职位描述:

  • 负责分词和词性标注,实体识别与消歧,关键词抽取,语义表示与文本相似度;

  • 对海量数据进行分析,构建话题、实体知识图谱。


任职资格:

  • 计算机/数学/统计学/模式识别相关专业,本科以上学历;

  • 熟悉 Linux 平台、Java/Scala/Python/C++ 中一种或多种语言编程;

  • 熟悉NLP和机器学习的理论基础,有海量数据挖掘、知识图谱研发经验优先;

  • 在文本分析、实体识别、词义消歧等领域有研发经验优先;

  • 具有良好的沟通能力,和良好的团队合作精神。



 ——【完】——

在线公开课 知识图谱专场

精彩继续


时间:8月23日 20:00-21:00

添加微信csdnai,备注:公开课,加入课程交流群

参加公开课,向讲师提问,即有机会获得定制T恤或者技术书籍


640?wx_fmt=jpeg

展开阅读全文

没有更多推荐了,返回首页