推荐算法总是让你“头大”?
然而,在使用过程中我们会发现,AI 推荐算法推送的内容并不总是让你满意,有时推送的内容甚至与你的兴趣差之千里。 推荐算法给人的感觉差强人意,原因是多种多样的,比如数据的缺失、算法本身存在缺陷,或者推荐机制不完善等。而且,即使是在推荐算法的应用已经相当成熟的今天,还存在着隐私、幕后操纵等问题,比如去年闹得纷纷扬扬的 YouTube “艾莎门”视频事件,Facebook AI 推荐操纵美国总统选举的丑闻,以及近日前谷歌工程师实名揭发老东家利用公司资源,通过修改 YouTube 等产品的后台搜索和推荐算法,找到用户中潜在的特朗普支持者,并向他们推送相反的内容给他们洗脑,目的是让特朗普在 2020 年败选,引得特朗普连发推特进行谴责。不得不感叹,这波操作实在让人大开眼界,同时后背发凉。

答案尽在这里
身为开发者,这些问题是不是也在困扰着你,但却苦于没有渠道学习到真正有效的解决之道?现在机会就在眼前,来到 AI ProCon 2019,这里有当前一线的推荐系统构建者们,与你分享当今大受欢迎、效果显著的推荐系统实践案例,将推荐系统在各个领域落地复用的经验倾囊相授! AI ProCon 2019 专设了推荐系统技术专场,大会组委会邀请到了来自阿里妈妈、京东、华为和快手的推荐系统负责人,他们将带来在广告、电商、视频领域构建推荐系统的设计思路和解决方案: 阿里妈妈深度学习算法平台负责人 朱小强(出品人)






