黎曼度量不变性

文章基于A Riemannian Framework for Tensor Computing论文推导黎曼度量不变性,过程比较粗糙,以后准备加log-map和exp-map以及黎曼均值求解过程,该篇论文还涉及该黎曼框架上的求导,标准坐标系,以及梯度,牛顿梯度的修正。
geodesics on tensor manifold going through Σ \Sigma Σ with tangent vector W W W:
Γ ( Σ , W ) ( t ) = e ( 1 t W ) Σ e ( 1 t W ) T \Gamma_{(\Sigma,W)}(t) = e^{(\frac{1}{t}W)}\Sigma e^{(\frac{1}{t}W)^T} Γ(Σ,W)(t)=e(t1W)Σe(t1W)T
where W , Σ ∈ W,\Sigma \in W,Σ symmetric spaces
geodesics on tensor manifold going through I I I with tangent vector W W W:
Γ ( I , W ) ( t ) = e ( t 2 W ) e ( t 2 W ) T = e t W \Gamma_{(I,W)}(t) = e^{(\frac{t}{2}W)} e^{(\frac{t}{2}W)^T}=e^{tW} Γ(I,W)(t)=e(2tW)e(2tW)T=etW
Ps, e t W , e t 2 W e^{tW},e^{\frac{t}{2}W} etW,e2tW are symmetric matric. If transformed W W W as W = U d i a g ( w i ) U T W = Udiag(w_i)U^T W=Udiag(wi)UT, e t W = U d i a g ( t e w i ) U T = ( e t W ) T , e t 2 W = U d i a g ( t 2 e w i ) U T = ( e t 2 W ) T e^{tW} = Udiag(te^{w_i})U^T = \left({e^{tW}}\right)^T, e^{\frac{t}{2}W} = Udiag(\frac{t}{2}e^{w_i})U^T = \left({e^{\frac{t}{2}W}}\right)^T etW=Udiag(tewi)UT=(etW)T,e2tW=Udiag(2tewi)UT=(e2tW)T
the eigenvector matric of symmetric matric can be transformed as unitary matrix by unitization.
d Γ ( t ) d t = d e t W d t = d U d i a g ( t e w i ) U T d t = U [ d d t t e w i ] n ∗ n U T = U d i a g ( w i e ( t w i ) ) U T = U d i a g ( e t w i 2 ) d i a g ( w i ) d i a g ( e t w i 2 ) U T = U d i a g ( e t w i 2 ) U T U d i a g ( w i ) U T U d i a g ( e t w i 2 ) U T = e ( t 2 W ) W e ( t 2 W ) = Γ ( t ) 1 2 ∗ W \begin{align*}\frac{d\Gamma(t)}{dt} = &\frac{de^{tW}}{dt}\\ =&\frac{dUdiag(te^{w_i})U^T}{dt}\\=& U\left[ \frac{d}{dt}te^{w_i}\right]_{n*n}U^T \\=&Udiag(w_ie^{(tw_i)})U^T \\ =&Udiag(e^\frac{tw_i}{2})diag(w_i)diag(e^\frac{tw_i}{2})U^T\\ = &Udiag(e^\frac{tw_i}{2})U^TUdiag(w_i)U^TUdiag(e^\frac{tw_i}{2})U^T\\ = &e^{(\frac{t}{2}W)} We^{(\frac{t}{2}W)} \\ =& {\Gamma(t)}^\frac{1}{2}\ast W \end{align*} dtdΓ(t)========dtdetWdtdUdiag(tewi)UTU[dtdtewi]nnUTUdiag(wie(twi))UTUdiag(e2twi)diag(wi)diag(e2twi)UTUdiag(e2twi)UTUdiag(wi)UTUdiag(e2twi)UTe(2tW)We(2tW)Γ(t)21W
Ps, d e A t d t = A e A t \frac{de^{At}}{dt} = Ae^{At} dtdeAt=AeAt
We obtain geodesic starting from any other point of the manifold:
Γ ( Σ , W ) ( t ) = Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) = Σ 1 2 e t Σ − 1 2 W Σ − 1 2 Σ 1 2 \Gamma_{(\Sigma,W)}(t) = \Sigma^\frac{1}{2}\ast \Gamma_{(I,\Sigma^{-\frac{1}{2}}\ast W)} = \Sigma^\frac{1}{2}e^{t\Sigma^{-\frac{1}{2}}W\Sigma^{-\frac{1}{2}}}\Sigma^\frac{1}{2} Γ(Σ,W)(t)=Σ21Γ(I,Σ21W)=Σ21etΣ21WΣ21Σ21
∵ Σ − 1 2 ∈ \because \Sigma^{-\frac{1}{2}} \in Σ21 symmetric spaces, ∴ Σ − 1 2 W Σ − 1 2 ∈ \therefore \Sigma^{-\frac{1}{2}}W\Sigma^{-\frac{1}{2}}\in Σ21WΣ21 symmetric spaces ∴ Σ − 1 2 ∗ W = U 1 d i a g ( d i ) U 1 T \therefore\Sigma^{-\frac{1}{2}} *W =U_1diag(d_i)U_1^T Σ21W=U1diag(di)U1T
d Γ ( I , Σ − 1 2 ∗ W ( t ) d t = U 1 d i a g ( d i e ( t d i ) ) U 1 T = U 1 d i a g ( e t d i 2 ) d i a g ( d i ) d i a g ( e t d i 2 ) U 1 T = U 1 d i a g ( e t d i 2 ) U 1 T U 1 d i a g ( d i ) U 1 T U 1 d i a g ( e t d i 2 ) U 1 = e ( t 2 Σ − 1 2 ∗ W ) Σ − 1 2 ∗ W e ( t 2 Σ − 1 2 ∗ W ) = Γ ( I , Σ − 1 2 ∗ W ) ) 1 2 ( t ) ∗ Σ − 1 2 ∗ W \begin{align*}\frac{d\Gamma_{(I, {\Sigma^{-\frac{1}{2}}}\ast W}(t)}{dt} = &U_1 diag(d_ie^{(td_i)})U_1^T\\ = & U_1diag(e^{\frac{td_i}{2}})diag(d_i)diag(e^{\frac{td_i}{2}})U_1^T \\= &U_1diag(e^{\frac{td_i}{2}})U_1^TU_1diag(d_i)U_1^TU_1diag(e^{\frac{td_i}{2}})U_1\\= &e^{(\frac{t}{2}\Sigma ^{-\frac{1}{2}}*W)} \Sigma ^{-\frac{1}{2}}*W e^{(\frac{t}{2}\Sigma ^{-\frac{1}{2}}*W)}\\ = &\Gamma_{(I,\Sigma ^{-\frac{1}{2}}*W))}^{\frac{1}{2}}(t) *\Sigma ^{-\frac{1}{2}}*W \end{align*} dtdΓ(I,Σ21W(t)=====U1diag(die(tdi))U1TU1diag(e2tdi)diag(di)diag(e2tdi)U1TU1diag(e2tdi)U1TU1diag(di)U1TU1diag(e2tdi)U1e(2tΣ21W)Σ21We(2tΣ21W)Γ(I,Σ21W))21(t)Σ21W
d Γ ( Σ , W ) ( t ) d t = d ( Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) ( t ) ) d t = Σ 1 2 d Γ ( I , Σ − 1 2 ∗ W ) ( t ) d t Σ 1 2 = Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) 1 2 ( t ) ∗ Σ − 1 2 ∗ W \begin{align*}\frac{d\Gamma_{(\Sigma, W)}(t)}{dt} = & \frac{d\left(\Sigma^{\frac{1}{2}}*\Gamma_{(I, \Sigma^{-\frac{1}{2}}*W)}(t)\right)}{dt} \\ = & \Sigma^\frac{1}{2}\frac{d\Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}(t)}{dt}\Sigma^\frac{1}{2}\\= &\Sigma^\frac{1}{2} * \Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}^{\frac{1}{2}}(t)*\Sigma^{-\frac{1}{2}}*W \end{align*} dtdΓ(Σ,W)(t)===dtd(Σ21Γ(I,Σ21W)(t))Σ21dtdΓ(I,Σ21W)(t)Σ21Σ21Γ(I,Σ21W)21(t)Σ21W
the norm at Γ ( Σ , W ) ( t ) \Gamma_{(\Sigma, W)}(t) Γ(Σ,W)(t) is
∥ Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) 1 2 ( t ) ∗ Σ − 1 2 ∗ W ∥ Γ ( Σ , W ) ( t ) 2 = ∥ Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) 1 2 ( t ) ∗ Σ − 1 2 ∗ W ∥ Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) ( t ) 2 = ∥ Γ ( I , Σ − 1 2 ∗ W ) 1 2 ( t ) ∗ Σ − 1 2 ∗ W ∥ Γ ( I , Σ − 1 2 ∗ W ) ( t ) 2 = ∥ Γ ( I , Σ − 1 2 ∗ W ) 1 2 ( t ) ∗ Σ − 1 2 ∗ W ∥ Γ ( I , Σ − 1 2 ∗ W ) 1 2 ( t ) ∗ I 2 = ∥ Σ − 1 2 ∗ W ∥ I 2 = ∥ Σ − 1 2 ∗ W ∥ 2 2 \begin{align*}{\lVert\Sigma^\frac{1}{2} * \Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}^{\frac{1}{2}}(t)*\Sigma^{-\frac{1}{2}}*W\rVert}_{\Gamma_{(\Sigma,W)}(t)}^2 = & {\lVert\Sigma^\frac{1}{2} * \Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}^{\frac{1}{2}}(t)*\Sigma^{-\frac{1}{2}}*W\rVert}^2_{\Sigma^{\frac{1}{2}}*\Gamma_{(I, \Sigma^{-\frac{1}{2}}*W)}(t)} \\= &{\lVert\Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}^{\frac{1}{2}}(t)*\Sigma^{-\frac{1}{2}}*W\rVert}^2_{\Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}(t)} \\ = &{\lVert\Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}^{\frac{1}{2}}(t)*\Sigma^{-\frac{1}{2}}*W\rVert}^2_{{\Gamma^\frac{1}{2}_{(I,\Sigma^{-\frac{1}{2}}*W)}(t)} *I}\\= &{\lVert\Sigma^{-\frac{1}{2}}*W\rVert}^2_I \\= &{\lVert\Sigma^{-\frac{1}{2}}*W\rVert}^2_2 \end{align*} Σ21Γ(I,Σ21W)21(t)Σ21WΓ(Σ,W)(t)2=====Σ21Γ(I,Σ21W)21(t)Σ21WΣ21Γ(I,Σ21W)(t)2Γ(I,Σ21W)21(t)Σ21WΓ(I,Σ21W)(t)2Γ(I,Σ21W)21(t)Σ21WΓ(I,Σ21W)21(t)I2Σ21WI2Σ21W22
the length of the curve between time 0 and time 1 is:
L = ∫ 0 1 ∥ d Γ ( Σ , W ) ( t ) d t ∥ Γ ( Σ , W ) ( t ) 2 d t = ∫ 0 1 ∥ Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) 1 2 ( t ) ∗ Σ − 1 2 ∗ W ∥ Γ ( Σ , W ) ( t ) 2 d t = ∫ 0 1 ∥ Σ − 1 2 ∗ W ∥ 2 2 d t = ∥ Σ − 1 2 ∗ W ∥ 2 2 \begin{align*}L =& \int_0^1{{\lVert \frac{d\Gamma_{(\Sigma, W)}(t)}{dt}\rVert}^2_{\Gamma_{(\Sigma,W)}(t)}}dt\\= &\int_0^1{{\lVert\Sigma^\frac{1}{2} * \Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}^{\frac{1}{2}}(t)*\Sigma^{-\frac{1}{2}}*W\rVert}_{\Gamma_{(\Sigma,W)}(t)}^2}dt\\= &\int_0^1{{\lVert\Sigma^{-\frac{1}{2}}*W\rVert}^2_2}dt\\= &{\lVert\Sigma^{-\frac{1}{2}}*W\rVert}^2_2 \end{align*} L====01dtdΓ(Σ,W)(t)Γ(Σ,W)(t)2dt01Σ21Γ(I,Σ21W)21(t)Σ21WΓ(Σ,W)(t)2dt01Σ21W22dtΣ21W22
when Γ ( Σ , W ) ( 1 ) = P \Gamma_{(\Sigma, W)}(1) = P Γ(Σ,W)(1)=P
Γ ( Σ , W ) ( 1 ) = Σ 1 2 ∗ Γ ( I , Σ − 1 2 ∗ W ) ( 1 ) = P Γ ( I , Σ − 1 2 ∗ W ) ( 1 ) = Σ − 1 2 ∗ P = e Σ − 1 2 ∗ W W = Σ 1 2 ∗ l o g ( Σ − 1 2 ∗ P ) \begin{align*}\Gamma_{(\Sigma, W)}(1) =& \Sigma^\frac{1}{2}*\Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}(1) =P\\ \Gamma_{(I,\Sigma^{-\frac{1}{2}}*W)}(1) =& \Sigma^{-\frac{1}{2}}*P = e^{\Sigma^{-\frac{1}{2}}*W}\\ W =& \Sigma^{\frac{1}{2}}*log({\Sigma^{-\frac{1}{2}}*P})\\ \end{align*} Γ(Σ,W)(1)=Γ(I,Σ21W)(1)=W=Σ21Γ(I,Σ21W)(1)=PΣ21P=eΣ21WΣ21log(Σ21P)
therefore, the length L L L:
L = ∥ Σ − 1 2 ∗ Σ 1 2 ∗ l o g ( Σ − 1 2 ∗ P ) ∥ 2 2 L = ∥ l o g ( Σ − 1 2 ∗ P ) ∥ 2 2 \begin{align*} L =& {\lVert\Sigma^{-\frac{1}{2}}*\Sigma^{\frac{1}{2}}*log({\Sigma^{-\frac{1}{2}}*P})\rVert}^2_2\\ L = &{\lVert log(\Sigma^{-\frac{1}{2}}*P)\rVert}_2^2 \end{align*} L=L=Σ21Σ21log(Σ21P)∥22log(Σ21P)∥22

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值