opengl学前知识

声明:文章核心内容摘自opengl中文网 LearnOpenGL CN,也会补充一部分网站上没有的内容。

目录

一 c/c++ 

二 向量和向量运算   

三 左手坐标系和右手坐标系  

四 欧拉角   

五 齐次坐标   

六 矩阵

1 矩阵的加减

2 矩阵的数乘

3 矩阵相乘

4 矩阵与向量相乘

1)单位矩阵

2)缩放

3)位移

4)旋转

5)矩阵的组合

七 拓展文章


一 c/c++ 

 opengl本身就是一个c/c++的库,在 opengl开发过程中还需要额外的c/c++的库,基本的c/c++所以这是必须的。

  C 语言基础教程

  c++基础教程

二 向量和向量运算   

    算是高中数据的知识,回顾一下向量与一个标量的加,减,乘,除运算,向量和向量之间的相加和相减以及向量的长度的意义和计算方法。这里重点说一下向量的相乘,相乘是一种很奇怪的情况。普通的乘法在向量上是没有定义的,因为它在视觉上是没有意义的。但是在相乘的时候我们有两种特定情况可以选择:一个是点乘(Dot Product),记作v¯⋅k¯,另一个是叉乘(Cross Product),记作v¯×k¯。

* 点乘
两个向量的点乘等于它们的数乘结果乘以两个向量之间夹角的余弦值。可能听起来有点费解,我们来看一下公式:

它们之间的夹角记作θ。为什么这很有用?想象如果v¯和k¯都是单位向量,它们的长度会等于1。这样公式会有效简化成:

现在点积只定义了两个向量的夹角。你也许记得90度的余弦值是0,0度的余弦值是1。使用点乘可以很容易测试两个向量是否正交(Orthogonal)或平行(正交意味着两个向量互为直角)。你也可以通过点乘的结果计算两个非单位向量的夹角,点乘的结果除以两个向量的长度之积,得到的结果就是夹角的余弦值,即cosθ

所以,我们该如何计算点乘呢?点乘是通过将对应分量逐个相乘,然后再把所得积相加来计算的。两个单位向量的(你可以验证它们的长度都为1)点乘会像是这样:

要计算两个单位向量间的夹角,我们可以使用反余弦函数cos−1cos−1 ,可得结果是143.1度。现在我们很快就计算出了这两个向量的夹角。点乘会在计算光照的时候非常有用。

* 叉乘

叉乘只在3D空间中有定义,它需要两个不平行向量作为输入,生成一个正交于两个输入向量的第三个向量。如果输入的两个向量也是正交的,那么叉乘之后将会产生3个互相正交的向量。接下来的教程中这会非常有用。下面的图片展示了3D空间中叉乘的样子:

不同于其他运算,如果你没有钻研过线性代数,可能会觉得叉乘很反直觉,所以只记住公式就没问题啦(记不住也没问题)。下面你会看到两个正交向量A和B叉积:

那么它有什么用呢,在游戏中常用于计算一个平面的法向量(法向量)

  向量和向量运算

  向量运算在游戏开发中的应用和思考

  向量的点乘和叉乘在游戏中的应用

三 左手坐标系和右手坐标系  

左手坐标系 vs 右手坐标系

OpenGL-坐标系

四 欧拉角   

 如何通俗地解释欧拉角?之后为何要引入四元数?

五 齐次坐标   

   齐次坐标

   这个很重要,后面我们在写glsl顶点着色器程序时很重要的一个变量gl_Position就是一个 齐次坐标,主要用来模拟物体的透视投影。

六 矩阵

   矩阵就是一个矩形的数字、符号或表达式数组。矩阵中每一项叫做矩阵的元素(Element)。下面是一个2×3矩阵的例子:

    矩阵可以通过(i, j)进行索引,i是行,j是列,这就是上面的矩阵叫做2×3矩阵的原因(3列2行,也叫做矩阵的维度(Dimension))。这与你在索引2D图像时的(x, y)相反,获取4的索引是(2, 1)(第二行,第一列)(译注:如果是图像索引应该是(1, 2),先算列,再算行)。矩阵基本也就是这些了,它就是一个矩形的数学表达式阵列。和向量一样,矩阵也有非常漂亮的数学属性。矩阵有几个运算,分别是:矩阵加法、减法和乘法。

1 矩阵的加减

    矩阵与矩阵之间的加减就是两个矩阵对应元素的加减运算,所以总体的规则和与标量运算是差不多的,只不过在相同索引下的元素才能进行运算。这也就是说加法和减法只对同维度的矩阵才是有定义的。一个3×2矩阵和一个2×3矩阵(或一个3×3矩阵与4×4矩阵)是不能进行加减的。我们看看两个2×2矩阵是怎样相加的(减法也是同样的法则):

2 矩阵的数乘

    和矩阵与标量的加减一样,矩阵与标量之间的乘法也是矩阵的每一个元素分别乘以该标量。下面的例子展示了乘法的过程:

    现在我们也就能明白为什么这些单独的数字要叫做标量(Scalar)了。简单来说,标量就是用它的值缩放(Scale)矩阵的所有元素(译注:注意Scalar是由Scale + -ar演变过来的)。前面那个例子中,所有的元素都被放大了2倍。

3 矩阵相乘

   矩阵乘法基本上意味着遵照规定好的法则进行相乘。当然,相乘还有一些限制:首先只有当左侧矩阵的列数与右侧矩阵的行数相等,两个矩阵才能相乘,其次矩阵相乘不遵守交换律(Commutative),也就是说A⋅B≠B⋅AA⋅B≠B⋅A。我们先看一个两个2×2矩阵相乘的例子:

更准确的计算规则如下:

     我们首先把左侧矩阵的行和右侧矩阵的列拿出来。这些挑出来行和列将决定我们该计算结果2x2矩阵的哪个输出值。如果取的是左矩阵的第一行,输出值就会出现在结果矩阵的第一行。接下来再取一列,如果我们取的是右矩阵的第一列,最终值则会出现在结果矩阵的第一列。这正是红框里的情况。如果想计算结果矩阵右下角的值,我们要用第一个矩阵的第二行和第二个矩阵的第二列(译注:简单来说就是结果矩阵的元素的行取决于第一个矩阵,列取决于第二个矩阵)。 计算一项的结果值的方式是先计算左侧矩阵对应行和右侧矩阵对应列的第一个元素之积,然后是第二个,第三个,第四个等等,然后把所有的乘积相加,这就是结果了。现在我们就能解释为什么左侧矩阵的列数必须和右侧矩阵的行数相等了,如果不相等这一步的运算就无法完成了!

   接下来看一个结果矩阵的维度是(n, m),n等于左侧矩阵的行数的矩阵计算。

4 矩阵与向量相乘

    我们用向量来表示位置,表示颜色,甚至是纹理坐标。让我们更深入了解一下向量,它其实就是一个N×1矩阵,N表示向量分量的个数(也叫N维(N-dimensional)向量)。如果你仔细思考一下就会明白。向量和矩阵一样都是一个数字序列,但它只有1列。那么,这个新的定义对我们有什么帮助呢?如果我们有一个M×N矩阵,我们可以用这个矩阵乘以我们的N×1向量,因为这个矩阵的列数等于向量的行数,所以它们就能相乘。

    但是为什么我们会关心矩阵能否乘以一个向量?很多有趣的2D/3D变换都可以放在一个矩阵中,用这个矩阵乘以我们的向量将变换(Transform)这个向量。

1)单位矩阵

    在OpenGL中,由于某些原因我们通常使用4×4的变换矩阵,而其中最重要的原因就是大部分的向量都是4分量的。我们能想到的最简单的变换矩阵就是单位矩阵(Identity Matrix)。单位矩阵是一个除了对角线以外都是0的N×N矩阵。在下式中可以看到,这种变换矩阵使一个向量完全不变:

    向量看起来完全没变。从乘法法则来看就很容易理解来:第一个结果元素是矩阵的第一行的每个元素乘以向量的每个对应元素。因为每行的元素除了第一个都是0,可得:1⋅1+0⋅2+0⋅3+0⋅4=11⋅1+0⋅2+0⋅3+0⋅4=1,向量的其他3个元素同理。

2)缩放

    对一个向量进行缩放(Scaling)就是对向量的长度进行缩放,而保持它的方向不变。由于我们进行的是2维或3维操作,我们可以分别定义一个有2或3个缩放变量的向量,每个变量缩放一个轴(x、y或z)。我们先来尝试缩放向量v¯=(3,2)v¯=(3,2)。我们可以把向量沿着x轴缩放0.5,使它的宽度缩小为原来的二分之一;我们将沿着y轴把向量的高度缩放为原来的两倍。我们看看把向量缩放(0.5, 2)倍所获得的s¯s¯是什么样的:

    OpenGL通常是在3D空间进行操作的,对于2D的情况我们可以把z轴缩放1倍,这样z轴的值就不变了。我们刚刚的缩放操作是不均匀(Non-uniform)缩放,因为每个轴的缩放因子(Scaling Factor)都不一样。如果每个轴的缩放因子都一样那么就叫均匀缩放(Uniform Scale)。我们下面会构造一个变换矩阵来为我们提供缩放功能。我们从单位矩阵了解到,每个对角线元素会分别与向量的对应元素相乘。如果我们把1变为3会怎样?这样子的话,我们就把向量的每个元素乘以3了,这事实上就把向量缩放3倍。如果我们把缩放变量表示为(S1,S2,S3)(S1,S2,S3)我们可以为任意向量(x,y,z)(x,y,z)定义一个缩放矩阵:

注意,第四个缩放向量仍然是1,因为在3D空间中缩放w分量是无意义的。w分量另有其他用途(跟齐次坐标有关)

3)位移

     位移(Translation)是在原始向量的基础上加上另一个向量从而获得一个在不同位置的新向量的过程,从而在位移向量基础上移动了原始向量。我们已经讨论了向量加法,所以这应该不会太陌生。和缩放矩阵一样,在4×4矩阵上有几个特别的位置用来执行特定的操作,对于位移来说它们是第四列最上面的3个值。如果我们把位移向量表示为(Tx,Ty,Tz)(Tx,Ty,Tz),我们就能把位移矩阵定义为:

    这样是能工作的,因为所有的位移值都要乘以向量的w行,所以位移值会加到向量的原始值上(想想矩阵乘法法则)。而如果你用3x3矩阵我们的位移值就没地方放也没地方乘了,所以是不行的。有了位移矩阵我们就可以在3个方向(x、y、z)上移动物体,它是我们的变换工具箱中非常有用的一个变换矩阵。

4)旋转

    首先我们来定义一个向量的旋转到底是什么。2D或3D空间中的旋转用角(Angle)来表示。角可以是角度制或弧度制的,周角是360角度或2 PI弧度。转半圈会旋转360/2 = 180度,向右旋转1/5圈表示向右旋转360/5 = 72度。下图中展示的2D向量v¯v¯是由k¯k¯向右旋转72度所得的:

    在3D空间中旋转需要定义一个角一个旋转轴(Rotation Axis)。物体会沿着给定的旋转轴旋转特定角度。如果你想要更形象化的感受,可以试试向下看着一个特定的旋转轴,同时将你的头部旋转一定角度。当2D向量在3D空间中旋转时,我们把旋转轴设为z轴(尝试想象这种情况)。使用三角学,给定一个角度,可以把一个向量变换为一个经过旋转的新向量。这通常是使用一系列正弦和余弦函数(一般简称sin和cos)各种巧妙的组合得到的。当然,讨论如何生成变换矩阵超出了这个教程的范围。旋转矩阵在3D空间中每个单位轴都有不同定义,旋转角度用θθ表示:

沿x轴旋转:

沿y轴旋转:

沿z轴旋转:

     这三种旋转过程实际上就是前面第四部分欧拉角的旋转过程,不过这里会有一个问题就是万向节死锁有兴趣的可以回头看相关的内容,这里不再叙述。

5)矩阵的组合

     使用矩阵进行变换的真正力量在于,根据矩阵之间的乘法,我们可以把多个变换组合到一个矩阵中。让我们看看我们是否能生成一个变换矩阵,让它组合多个变换。假设我们有一个顶点(x, y, z),我们希望将其缩放2倍,然后位移(1, 2, 3)个单位。我们需要一个位移和缩放矩阵来完成这些变换。结果的变换矩阵看起来像这样:

    注意,当矩阵相乘时我们先写位移再写缩放变换的。矩阵乘法是不遵守交换律的,这意味着它们的顺序很重要。当矩阵相乘时,在最右边的矩阵是第一个与向量相乘的,所以你应该从右向左读这个乘法。建议您在组合矩阵时,先进行缩放操作,然后是旋转,最后才是位移,否则它们会(消极地)互相影响。比如,如果你先位移再缩放,位移的向量也会同样被缩放(译注:比如向某方向移动2米,2米也许会被缩放成1米)!用最终的变换矩阵左乘我们的向量会得到以下结果:

   这样我们就先把向量缩放2倍,然后位移了(1, 2, 3)个单位。

   上面提到的位移,缩放,各种旋转矩阵是游戏开发中最基本的矩阵,在对物体进行移动旋转和缩放时都是通过和对应的矩阵相乘来实现的,当然相关的运算在实际应用中不需要我们去手动计算,有现成数学库(GLM)可以使用,GLM是OpenGL Mathematics的缩写,它是一个只有头文件的库,也就是说我们只需包含对应的头文件就行了,不用链接和编译。

   GLM github

七 拓展文章

   2D及3D向量几何图形学 

   渲染管线中的法线变换矩阵

   如何用 C++ 写一个可编程软件渲染器?

   C++ 编程的简单的软件渲染器

   OpenGL 图形学基础知识汇总

   GL Shader Language(GLSL)详解-基础语法

   OpenGL操作手册

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值