【stirling数】
VanishD
気付かないうちにオトナになって,绮丽な嘘 口に出来るほど。
展开
-
[hdu4372]Count the Buildings【stirling数】
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=4372 【题解】 首先最高的一定能看到。 那么我们可以把序列划分为左边和右边,一共n−1n−1n-1个数,左边能看到x−1x−1x-1,右边能看到y−1y−1y-1个数。接下来,可以把左边分为x−1x−1x-1段,每一段的第一个为可见的,右边同理。同时n−1n−1n-1个数的排列...原创 2018-06-07 18:28:30 · 183 阅读 · 0 评论 -
[bzoj4555][Tjoi2016&Heoi2016]求和【stirling数】【FFT~NTT】
【题目链接】 https://www.lydsy.com/JudgeOnline/problem.php?id=4555 【题解】 考虑第二类斯特林数的公式: xn=∑xi=0(xi)i!∗Sn,ixn=∑i=0x(ix)i!∗Sn,ix^n=\sum_{i=0}^{x}\left(_{i}^{x}\right)i!*S_{n,i} 就是先枚举选了几个格子,再乘以顺序。 ...原创 2018-06-25 07:46:11 · 277 阅读 · 0 评论 -
[bzoj5093][Lydsy1711月赛]图的价值【FFT~NTT】【stirling数】【二项式反演】
【题目链接】 https://www.lydsy.com/JudgeOnline/problem.php?id=5093 【题解】 首先每个点都是独立的,可以求出一个点的贡献再把它乘以nnn,枚举这个点连了多少条边,可以列出式子: ans=n∗2(n−12)∑n−1i=0(n−1i)ikans=n∗2(2n−1)∑i=0n−1(in−1)ikans = n*2^{\left(_...原创 2018-06-26 18:48:59 · 325 阅读 · 0 评论