自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(302)
  • 资源 (18)

原创 SQLite 3.8.3 or later is required (found 3.7.17).

方法一:给Django降级pip uninstall djangopip install django==2.1.7方法二:升级SQLite(1)获取安装包下载链接下载地址:https://www.sqlite.org/download.html(2)wget下载#链接最好重新获取,否则可能不是最新版本wget https://www.sqlite.org/2019/sqlite-autoconf-3300100.tar.gz(3)解压并安装[root@loc

2020-09-24 14:41:13 47

原创 html新生成元素的点击事件

$("body").on("click","a.downfile", function() { alert('11111');});

2020-09-14 09:04:04 257

原创 django.db.utils.OperationalError: no such table:

Django模型修改后请依次执行python manage.py checkpython manage.py makemigrations 模型名Django 把对模型(也就是数据库模式)的改动存储在迁移中,迁移就是磁盘中的文件。如果还报错,执行python manage.py sqlmigrate 模型名 0001这条指令会创建数据库并打印sql,找到报错中每找到的数据库对应的指令,把他复制下来,用数据库管理工具打开你的数据库,如果确实没找到模型对应的表,那么直接用复制的

2020-09-09 17:30:30 419

原创 Djanjo BUG 无法加载静态文件

目录原因进一步原因解决1解决2其他办法原因settings.py被修改DEBUG = FalseALLOWED_HOSTS = ['*']进一步原因在关闭调试的情况下,Django将不再为您处理静态文件-生产Web服务器(Apache或其他服务器)应对此进行处理。解决1在不安全模式下运行devserver:manage.py runserver --insecure解决2settings.pySTATIC_URL = '/stati

2020-09-03 14:49:15 397

原创 missing 1 required positional argument: ‘on_delete‘报错解决方案

多对一的关系,需要两个位置参数:模型相关的类和on_delete选项。(on_delete实际上并不需要,但是不提供它会给出弃用警告,这在Django 2.0中将是必需的,1.8及以前的版本不需要)要创建递归关系,即:与自身具有多对一关系的对象使用。models.ForeignKey('self', on_delete=models.CASCADE)PS:Django的版本更新比较频繁,每次版本迭代都有些改动,有问题直接查官方文档或者Stack Overflow,基本都可以解决。...

2020-09-02 13:16:38 209

原创 python二叉堆

定义二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树)。二叉堆有两种:最大堆和最小堆。最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。二叉堆一般用数组来表示。如果根节点在数组中的位置是1,第n个位置的子节点分别在2n和 2n+1。因此,第1个位置的子节点在2和3,第2个位置的子节点在4和5。以此类推。这种基于1的数组存储方式便于寻找父节点和子节点。二叉堆的根节点叫做堆顶。最大堆和最小堆的特点

2020-08-31 16:09:32 436

原创 python树

树的一些定义节点节点是树的基本部分。它可以有一个名称,我们称之为“键”。节点也可以有附加信息。我们将这个附加信息称为“有效载荷”。虽然有效载荷信息不是许多树算法的核心,但在利用树的应用中通常是关键的。边边是树的另一个基本部分。边连接两个节点以显示它们之间存在关系。每个节点(除根之外)都恰好从另一个节点的传入连接。每个节点可以具有多个输出边。根树的根是树中唯一没有传入边的节点。在 Figure 2 中,/ 是树的根。路径路径是由边连接节点的有序列表。例如,Mammal→

2020-08-28 11:07:22 388

转载 2020/8/26房企名词

剔除预收款资产负债率预收款项(合同负债)是房企销售物业所得,在确认交房后会转为营收,因此只是名义上的负债,为了确定房企总资产中真实负债占比,在负债总额中应扣除预收款净负债率=(负债-预收账款)/(总资产-预收账款*60%)举例如下:如某房地产企业总资产20000万元,总负债18000万元,预收账款8000万元。其净负债率是(18000-8000)/(20000-8000*60%)=65.7%。净负债率净资产负债率,也称为债务股权比率,反映由债权人提供的资本与股东提供的资本的

2020-08-26 20:00:32 330

原创 python排序下

希尔排序希尔排序使用增量i(有时称为 gap ),通过选择 i 个项的所有项来创建子列表。对子列表进行差值排序,最后进行一次插值排序子列表插值排序全局插值排序归并排序归并排序是一种递归算法,不断将列表拆分为一半。 如果列表为空或有一个项,则按定义(基本情况)进行排序。如果列表有多个项,我们分割列表,并递归调用两个半部分的合并排序。 一旦对这两半排序完成,就执行称为合并的基本操作。合并是获取两个较小的排序列表并将它们组合成单个排序的新列表的过程。#递归基本条件递归..

2020-08-26 17:52:49 405

原创 python排序

冒泡排序冒泡排序需要多次遍历列表。它比较相邻的项并交换那些无序的项。每次遍历列表将下一个最大的值放在其正确的位置(靠右)。实质上,每个项“冒泡”到它所属的位置。def bubbleSort(alist): for passnum in range(len(alist)-1,0,-1): #冒泡排序每次都会将最大值靠右排序,所以下次排序就不惜要比较最后一个值了,他的循环次数也是 n,n-1,n-2的递减 for i in range(passnum): .

2020-08-20 15:03:36 513

原创 python搜索算法

顺序查找从列表中的第一个项目开始,我们按照基本的顺序排序,简单地从一个项移动到另一个项,直到找到我们正在寻找的项或遍历完整个列表。如果我们遍历完整个列表,则说明正在搜索的项不存在。def sequentialSearch(alist, item): pos = 0 found = False while pos < len(alist) and not found: if alist[pos] == item: found

2020-08-18 19:33:29 595

原创 python递归

什么是递归递归是一种解决问题的方法,将问题分解为更小的子问题,直到得到一个足够小的问题可以被很简单的解决。通常递归涉及函数调用自身。递归允许我们编写优雅的解决方案,解决可能很难编程的问题。递归的三定律1. 递归算法必须具有基本情况。 2. 递归算法必须改变其状态并向基本情况靠近。 3. 递归算法必须以递归方式调用自身。递归实例def listsum(numList): if len(numList) == 1: return numList.pop() #基

2020-08-17 14:31:46 445

原创 python链表

链表的结构是项的集合,其中每个项保持相对于其他项的相对位置。python链表常用的函数一个简单地项class Node: def __init__(self,initdata): self.data = initdata self.next = None def getData(self): return self.data def getNext(self): return self.next...

2020-08-14 16:07:02 403

原创 python队列

目录什么是队列队列常用的函数入队与出队的时间复杂度code什么是队列队列是项的有序集合,其中添加新项的一端称为队尾,移除项的一端称为队首。当一个元素从队尾进入队列时,一直向队首移动,直到它成为下一个需要移除的元素为止。最近添加的元素必须在队尾等待。集合中存活时间最长的元素在队首,这种排序成为 FIFO,先进先出,也被成为先到先得。队列的最简单的例子是我们平时不时会参与的列。排队等待电影,在杂货店的收营台等待,在自助餐厅排队等待(这样我们可以弹出托盘栈)。行为良好的线或队列是有限制.

2020-08-13 19:13:41 509

原创 python栈

前言引自书中:栈(有时称为“后进先出栈”)是一个项的有序集合,其中添加移除新项总发生在同一端。这一端通常称为“顶部”。与顶部对应的端称为“底部”。栈的底部很重要,因为在栈中靠近底部的项是存储时间最长的。最近添加的项是最先会被移除的。这种排序原则有时被称为 LIFO,后进先出。它基于在集合内的时间长度做排序。较新的项靠近顶部,较旧的项靠近底部。栈的函数利用栈实现括号缺失检测from pythonds.basic.stack import Stacks_dict = {"{":"}",

2020-08-11 17:38:00 442

原创 python字典主要方法及内容

摘自书中引言python 中第二个主要的数据结构是字典。你可能记得,字典和列表不同,你可以通过键而不是位置来访问字典中的项目。在本书的后面,你会看到有很多方法来实现字典。字典的 get和 set 操作都是 O(1)。另一个重要的操作是 contains,检查一个键是否在字典中也是 O(1)。所有字典操作的效率总结在 Table中。关于字典性能的一个重要方面是,我们在表中提供的效率是针对平均性能。 在一些罕见的情况下,contains,get item 和 set item 操作可以退化为O(n)。.

2020-08-11 14:27:00 431

原创 python列表的性能

前言最近开始学习算法,python书籍为 《python-data-structure-cn》引自书中:python 的设计者在实现列表数据结构的时候有很多选择。每一个这种选择都可能影响列表操作的性能。为了帮助他们做出正确的选择,他们查看了最常使用列表数据结构的方式,并且优化了实现,以便使得最常见的操作非常快。当然,他们还试图使较不常见的操作快速,但是当需要做出折衷时,较不常见的操作的性能通常牺牲以支持更常见的操作。常见操作及时间复杂度pop() 、pop(i) 、sort()测试p

2020-08-11 11:47:28 591

原创 python装饰器相关

目录装饰器原理执行流程多个装饰器执行流程带参装饰器类装饰器装饰器原理装饰器函数接收一个参数fun函数 在部函数inner中执行传进来的参数fun() 返回值为内部函数inner 是一个闭包函数。使用@+函数名调用装饰器,同时将被装饰的函数作为参数传入。执行流程def zsc(fun): def inner(): print('...验证权限...') #2 fun() print('...装饰器开始装饰...')

2020-08-05 17:12:40 689

转载 在浏览器敲一个网址之后的处理过程

目录DNS解析2. Socket建立连接3. 发送HTTP请求3.1 请求方法URI协议/版本3.2 请求头(Request Header)3.3 请求正文3.4 HTTP请求方法:GET方法与POST方法4. 服务器响应4.1 HTTP响应报文头4.2 HTTP应答码5. 关闭连接tcp三次握手及其必要性我们在浏览器中输入一个网址,比如www.google.cn,浏览器就会加载出百度的主页。那么浏览器背后完成的具体是怎么样的呢?总结起来大概的流程是这..

2020-07-30 17:07:56 601

原创 Mysql笔记

数据库基础知识为什么要使用数据库数据保存在内存优点: 存取速度快缺点: 数据不能永久保存数据保存在文件优点: 数据永久保存缺点:1)速度比内存操作慢,频繁的IO操作。2)查询数据不方便数据保存在数据库1)数据永久保存2)使用SQL语句,查询方便效率高。3)管理数据方便什么是SQL?结构化查询语言(Structured Query Language)简称SQL,是一种数据库查询语言。作用:用于存取数据、查询、更新和管理关系数据库系统。什么是MySQL

2020-07-30 11:14:10 526

原创 python训练题

1.代码运行结果v = dict.fromkeys({'k1','k2'},[])v['k1'].append(['356'])print(v)v['k1'] = '777'print(v){'k2': [['356']], 'k1': [['356']]}{'k2': [['356']], 'k1': '777'}Process finished with exit code 02.那一项不是内置函数 DA:map B: reduce C: filter D: ma

2020-07-28 20:54:50 451

转载 HMM

目录概率计算问题前向算法预测算法学习算法有监督学习无监督学习HMM 实例概率计算问题继续上一篇的例子。现在模型已经给定,观测序列也已经知道了,我们要计算的是 O= (红宝石,珍珠,珊瑚) 的出现概率,我们要求的是 P(O|λ)。直接计算用直接计算法来求 λ情况下长度为 T 的观测序列 O的概率:P(O|λ)=∑S∈STP(O,S|λ)其中 ST表示所...

2020-06-11 09:18:52 10385 1

转载 PCA——利用数学工具提取主要特征

目录泛滥成灾的特征维度维度灾难数据稀疏数据稀疏对机器学习的影响降低数据维度降维度方法主成分分析(PCA)的原则PCA 的优化目标基于最近重构性的优化目标基于最大可分性的优化目标泛滥成灾的特征维度维度灾难维数灾难(Curse of Dimensionality,也可以直接翻译为“维度诅咒”)是一种在分析或组织高维(通常是几百维或者更高维度)数据时会...

2020-06-11 09:18:09 10298

转载 KMeans——最简单的聚类算法

什么是聚类(Clustering)聚类并非一种机器学习专有的模型或算法,而是一种统计分析技术,在许多领域得到广泛应用。广义而言,聚类就是通过对样本静态特征的分析,把相似的对象,分成不同子集(后面我们将聚类分出的子集称为“簇”),被分到同一个子集中的样本对象都具有相似的属性。在机器学习领域,聚类属于一种无监督式学习算法。许多聚类算法在执行之前,需要指定从输入数据集中产生的分簇的...

2020-06-11 09:17:16 10791

转载 从有监督到无监督:由 KNN 引出 KMeans

目录从有监督学习到无监督学习有监督学习(Supervised Learning)无监督学习(Unsupervised Learning)半监督学习(Semi-supervised Learning)发展趋势KNN 算法KNN 算法原理KNN 的 k从有监督学习到无监督学习有监督学习和无监督学习,是机器学习两个大的类别。我们之前讲的都是有监督学习,毕竟有监督学...

2020-06-11 09:16:28 10557

转载 直观认识 SVM 和 SVR

SVM 实例线性可分 SVM先来看一个最简单的例子:线性可分 SVM: import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC # "Support vector classifier" # 定义函数plot_svc_decision_function...

2020-06-11 09:15:39 10275

转载 SVM——线性可分 SVM 原理

目录线性可分和超平面线性可分支持向量机线性可分和超平面二分类问题在机器学习的应用中,至少现阶段,分类是一个非常常见的需求。特别是二分类,它是一切分类的基础。而且,很多情况下,多分类问题可以转化为二分类问题来解决。所谓二分类问题就是:给定的各个样本数据分别属于两个类之一,而目标是确定新数据点将归属到哪个类中。特征的向量空间模型一个个具体的样本,在被机器学习算法处理时,...

2020-06-11 09:14:26 10254

转载 决策树——告诉你 Hello Kitty 是人是猫

Hello Kitty 的种族问题Hello Kitty,一只以无嘴造型40年来风靡全球的萌萌猫,在其40岁生日时,居然被其形象拥有者宣称:Hello Kitty 不是猫!2014年8月,研究 Hello Kitty 多年的人类学家 Christine R. Yano 在写展品解说时,却被 Hello Kitty 持有商三丽鸥纠正:Hello Kitty 是一个卡通人物,她是一个小女孩,是...

2020-06-11 09:13:46 10222

转载 决策树——既能分类又能回归的模型

目录决策树什么是决策树直观理解决策树构建决策树几种常用算法ID3 算法C4.5CART决策树前面我们讲了线性回归和朴素贝叶斯分类模型。前者只能做回归,后者只能做分类。但本文中要讲的决策树模型,却既可以用于分类,又可以用于回归。什么是决策树决策树是一种非常基础又常见的机器学习模型。一棵决策树(Decision Tree)是一个树结构(可以是二叉树或...

2020-06-11 09:13:02 10499

转载 逻辑回归——用来做分类的回归模型

目录回归模型做分类逻辑回归的目标函数实例及代码实现LR 处理多分类问题回归模型做分类LR 却是用来做分类的。它的模型函数为:设置z = 在二维坐标中形成 S 形曲线:上图中,z 是自变量(横轴),最终计算出的因变量 y(纵轴),则是一个 [0,1] 区间之内的实数值。一般而言,当 y>0.5时,z 被归类为真(True)或阳性(Posit...

2020-06-11 09:12:24 10248

转载 逻辑回归——非线性逻辑函数的由来

目录逻辑回归指数增长逻辑函数追本溯源的理论学习线性 VS 非线性逻辑回归今天我们要讲的模型叫做 Logistic Regression (LR),一般翻译为逻辑回归。LR 是一种简单、高效的常用分类模型——有点奇怪是吧,为什么名字叫做“回归”却是一个分类模型,这个我们稍后再讲。先来看看这个 LR 本身。LR 的模型函数记作:y=h(x),具体形式如下:hθ(...

2020-06-11 09:11:29 10158

转载 机器学习---朴素贝叶斯分类器——条件概率的参数估计

目录不再简单地将频率当作概率两个学派极大似然估计 (Maximum Likelihood Estimation, MLE)正态分布的极大似然估计用代码实现朴素贝叶斯模型参考资料不再简单地将频率当作概率已知朴素贝叶斯公式:P(C|F1,F2,…,Fn)=1ZP(C)∏ni=1P(Fi|C)其中,Fi表示样本的第 i 个特征,C 为类别标签。P(Fi|C) 表示样本...

2020-06-11 09:10:42 10258

转载 机器学习-----朴素贝叶斯分类器——从贝叶斯定理到分类模型

目录分类 vs 回归贝叶斯定理朴素贝叶斯分类器(Naïve Bayes Classifier)分类 vs 回归分类模型 VS 回归模型,最根本的不同:前者是预测一个标签(类型、类别);后者则是预测一个量。换一个角度来看,分类模型输出的预测值是离散值;而回归模型输出的预测值则是连续值。也就是说输入一个样本给模型,回归模型给出的预测结果是在某个值域(一般是实数域或其子集...

2020-06-11 09:09:11 10478

转载 机器学习--线性回归——梯度下降法求解目标函数

y = a + bx 的目标函数上一篇文章,我们解释了线性,本文我们回到求解线性回归目标函数的问题上。前面已知,线性回归的目标函数为:J(a,b)=12m∑mi=1(a+bx(i)−y(i))2J(a,b) 是一个二元函数。我们要求的是:两个参数 a 和 b 的值。要满足的条件是:a 和 b 取这个值的时候,J(a,b) 的值达到最小。我们现在就来用之前讲过的算法:梯度下降法,来...

2020-06-11 09:08:14 10259

转载 机器学习--模型的质量和评判指标

衡量模型质量通过训练得到模型后,我们就可以用这个模型,来进行预测了(也就是把数据输入到模型中让模型吐出一个结果)。预测肯定能出结果,至于这个预测结果是否是你想要的,就不一定了。一般来说,没有任何模型能百分百保证尽如人意,但我们总是追求尽量好。什么样的模型算好呢?当然需要测试。当我们训练出了一个模型以后,为了确定它的质量,我们可以用一些知道预期预测结果的数据来对其进行预测,把实际...

2020-06-11 09:07:06 10095

转载 机器学习--模型的获取和改进

目录获取模型的过程训练集、验证集和测试集训练的过程改进模型调参(算法)模型类型选择前面两篇文章,我们从直观的角度讲解了机器学习的最基本原理,并且解释了机器学习三要素:数据、算法和模型。“应用机器学习技术”这件事情,具体到微观的行为,其实就是:使用机器学习模型来预测数据,得到预测结果。然后,预测结果可能会作为下一步业务逻辑的依据。要使用机器学习模型,首先要获得它。...

2020-06-11 09:06:22 10108

转载 机器学习三要素之数据、模型、算法

目录数据向量空间模型和无标注数据有标注数据模型模型是怎么得到的?算法机器学习三要素包括数据、模型、算法。简单来说,这三要素之间的关系,可以用下面这幅图来表示:总结成一句话:算法通过在数据上进行运算产生模型。下面我们先分别来看三个要素。数据关于数据,其实我们之前已经给出了例子。源数据上一篇中,图1老鼠和其他动物和图2小马宝莉六女主就是现实中的两...

2020-06-11 09:05:31 10058

转载 如何学习“机器学习”

以模型为驱动,了解“机器学习”的本质初次学习模型,不必贪多。但就这些选定的模型,一定要搞清楚其问题域、模型函数、目标函数、训练算法……潜入到数学公式推导的层面,对每一步的公式变换和对应的物理意义有所理解,然后再去实践。这一个个的模型,就是机器学习的“肌肉”,我们要通过观察学习这一块块肌肉,以其为载体来了解机器学习的核心——将事物转化为数值,将关系、变换转化为运算,以事实(数据)为依据,以规...

2020-06-11 09:04:35 10013

转载 机器是如何学习的?

什么是机器学习?字面理解,就是让机器自己学会某种东西。更准确一点,机器学习就是:让计算机程序(机器),不是通过人类直接指定的规则,而是通过自身运行,习得(学习)事物的规律和事物间的关联。对人类而言,一个概念对应的是具体的事物,一般而言,人类对其有所认知的事物,都不是孤立的,互相之间有着各种各样的关联。比如说:当我们对一个人说“苹果”的时候,TA 可能马上就会想到那个圆圆的、香...

2020-06-11 09:03:47 10221

原创 rasa.exceptions.ModelNotFound: No NLU or Core data for unpacked model at:

执行遇到的报错:rasa train解决在项目目录下添加model文件夹

2020-06-04 13:26:08 10047

鼠标拖动divjquery-ui-1.11.0.rar|鼠标拖动divjquery-ui-1.11.0.rar

鼠标拖动元素框架有样例 ,解压后进入直接就能运行

2020-09-01

rasa_x.rar

Rasa-x0.28.1的Whl

2020-05-09

rasa-1.10.0-py3-none-any.whl

Rasa机器人1.10.0Whl包

2020-05-09

nodejs.rar

nodejs,最新,12.16.1,快速下载

2020-03-26

setup_gensim.rar

gensim的whl包,包含大部分依赖whl包,其他的依赖包比较小可以自动安装完成,建议按照图片顺序安装依赖包,安装完成即可使用gensim.model.word2vec进行词向量计算了。 版本: gensim-3.8.1-cp37-cp37m-win_amd64.whl

2020-03-20

电商评论 中文语料 全中文 空格分词 60W

电商评论中文语料,全中文,分词,60W

2020-03-20

全国省区市对照表.rar

全国省区市对照表.rar全国省区市对照表.rar

2019-12-26

世界主要国家城市对照表.rar

世界主要国家城市对照表.rar世界主要国家城市对照表.rar

2019-12-26

python-doc.rar

python操作doc文档安装包

2019-12-18

mongoDB_LINUX安装包.zip

mongoDB_LINUX安装包.zip

2019-12-11

neoj_linux安装包.zip

neoj_linux安装包.zip

2019-12-11

PDFMiner3K安装包 tar.gz

PDFMiner3K安装包 tar.gz PDFMiner3K安装包 tar.gzPDFMiner3K安装包 tar.gzPDFMiner3K安装包 tar.gz PDFMiner3K安装包 tar.gz PDFMiner3K安装包 tar.gz PDFMiner3K安装包 tar.gz PDFMiner3K安装包 tar.gz

2019-12-09

桃花旋转等待HTML特效.rar

桃花旋转等待HTML特效.rar

2019-11-19

知识图谱拓扑图前端实现HTML实现

知识图谱&&拓扑图前端实现HTML实现!

2019-11-18

tesseract.exewin64

tesseract win64,方便用

2018-11-15

mvstats包、数据

https://blog.csdn.net/Da___Vinci/article/details/83537319也可以下载

2018-10-30

python进行数据分析的实例数据

python进行数据分析的实例数据

2018-10-19

Redis可视化工具 Redis Desktop Manager

-----Redis可视化工具 Redis Desktop Manager-------

2018-10-01

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除