在此总结一下Bitmap的使用,网上也有很多优秀的文章,这里争取总结的更系统,全面一些。希望对大家有所帮助,哈哈!
一:Bitmap 的基本使用
BitmapFactory类提供了四类方法用来加载Bitmap:
decodeFile 从文件中加载
例如:
a. 通过Intent打开本地图片或照片
b. 在onActivityResult中获取图片uri
c. 根据uri获取图片的路径
d. 根据路径解析bitmap:Bitmap bm = BitmapFactory.decodeFile(sd_path)decodeResource 以R.drawable.xxx的形式从本地资源中加载
Bitmap decodeResource = BitmapFactory.decodeResource(getResources(), R.drawable.ww1);
decodeStream 从输入流加载
a.开启异步线程去获取网络图片
b.网络返回InputStream
c.解析:Bitmap bm = BitmapFactory.decodeStream(stream),这是一个耗时操作,要在子线程中执行decodeByteArray 从字节数组中加载
接3.a,3.b,
c. 把InputStream转换成byte[]
d. 解析:Bitmap bm = BitmapFactory.decodeByteArray(myByte,0,myByte.length);
注意:decodeFile和decodeResource间接调用decodeStream方法。
二:高效加载Bitmap
我们在使用bitmap时,经常会遇到内存溢出等情况,这是因为图片太大或者android系统对单个应用施加的内存限制等原因造成的,比如上述方法1加载一张照片时就会报:06-28 10:43:30.777 26007-26036/com.peak.app W/OpenGLRenderer: Bitmap too large to be uploaded into a texture (3120x4160, max=4096x4096),而方法2加载一个3+G的照片时会报Caused by: java.lang.OutOfMemoryError: Failed to allocate a 144764940 byte allocation with 16765264 free bytes and 109MB until OOM所以,高效的使用bitmap就显得尤为重要,对他效率的优化也是如此。
高效加载Bitmap的思想也很简单,就是使用系统提供给我们Options类来处理Bitmap。翻看Bitmap的源码,发现上述四个加载bitmap的方法都是支持Options参数的。
BitmapFactory.Options 一些参数的说明如下:
- inSampleSize:这是表示采样大小。用于将图片缩小加载出来的,以免站占用太大内存,适合缩略图。
- inJustDecodeBounds:当inJustDecodeBounds为true时,执行decodeXXX方法时,BitmapFactory只会解析图片的原始宽高信息,并不会真正的加载图片
- inPreferredConfig:用于配置图片解码方式,对应的类型Bitmap.Config。如果非null,则会使用它来解码图片。默认值为是 Bitmap.Config.ARGB_8888
- inBitmap:在Android 3.0开始引入了inBitmap设置,通过设置这个参数,在图片加载的时候可以使用之前已经创建了的Bitmap,以便节省内存,避免再次创建一个Bitmap。在Android4.4,新增了允许inBitmap设置的图片与需要加载的图片的大小不同的情况,只要inBitmap的图片比当前需要加载的图片大就好了。
通过BitmapFactory.Options按一定的采样率来加载缩小后的图片,然后在ImageView中使用缩小的图片这样就会降低内存占用避免【OOM】,提高了Bitamp加载时的性能。
这其实就是我们常说的图片尺寸压缩。尺寸压缩是压缩图片的像素,一张图片所占内存的大小 图片类型*宽*高,通过改变三个值减小图片所占的内存,防止OOM,当然这种方式可能会使图片失真 。
android 色彩模式说明(也是Config解析说明):
- Bitmap.Config.ALPHA_8:每个像素占用1byte内存。
- Bitmap.Config.ARGB_4444::每个像素占用2byte内存
- Bitmap.Config.ARGB_8888:每个像素占用4byte内存
- Bitmap.Config.RGB_565:每个像素占用2byte内存
Android默认的色彩模式为ARGB_8888,这个色彩模式色彩最细腻,显示质量最高。但同样的,占用的内存也最大。因此,一般我们会使用Bitmap.Config.RGB_565
BitmapFactory.Options的inPreferredConfig参数可以 指定decode到内存中,手机中所采用的编码,可选值定义在Bitmap.Config中。缺省值(默认值)是ARGB_8888。
假设一张1024*1024,模式为ARGB_8888的图片,那么它占有的内存就是:1024*1024*4 = 4MB
1、采样率inSampleSize
- inSampleSize的值必须大于1时才会有效果,且采样率同时作用于宽和高;
- 当inSampleSize=1时,采样后的图片为图片的原始大小
- 当inSampleSize=2时,采样后的图片的宽高均为原始图片宽高的1/2,这时像素为原始图片的1/(22),占用内存也为原始图片的1/(22);
- inSampleSize的取值应该总为2的整数倍,否则会向下取整,取一个最接近2的整数倍,比如
inSampleSize=3时,系统会取inSampleSize=2
假设一张1024*1024,模式为ARGB_8888的图片,inSampleSize=2,原始占用内存大小是4MB,采样后的图片占用内存大小就是(1024/2) * (1024/2 )* 4 = 1MB
2、获取采样率遵循以下步骤
- 将BitmapFacpry.Options的inJustDecodeBounds参数设为true并加载图片当inJustDecodeBounds为true时,执行decodeXXX方法时,BitmapFactory只会解析图片的原始宽高信息,并不会真正的加载图片
- 从BitmapFacpry.Options取出图片的原始宽高(outWidth,outHeight)信息
- 选取合适的采样率
- 将BitmapFacpry.Options的inSampleSize参数设为false并重新加载图片
经过上面过程加载出来的图片就是采样后的图片,代码如下:
public void decodeResource(View view) {
Bitmap bm = decodeBitmapFromResource();
imageview.setImageBitmap(bm);
}
private Bitmap decodeBitmapFromResource(){
BitmapFactory.Options options = new BitmapFactory.Options();
options.inJustDecodeBounds = true;
BitmapFactory.decodeResource(getResources(), R.drawable.bbbb, options);
options.inPreferredConfig= Bitmap.Config.RGB_565;
options.inSampleSize = calculateSampleSize(options,300,300);
options.inJustDecodeBounds =false;
return BitmapFactory.decodeResource(getResources(),R.drawable.bbbb,options);
}
// 计算合适的采样率(当然这里还可以自己定义计算规则),reqWidth为期望的图片大小,单位是px
private int calculateSampleSize(BitmapFactory.Options options,int reqWidth,int reqHeight){
Log.i("========","calculateSampleSize reqWidth:"+reqWidth+",reqHeight:"+reqHeight);
int width = options.outWidth;
int height =options.outHeight;
Log.i("========","calculateSampleSize width:"+width+",height:"+height);
int inSampleSize = 1;
int halfWidth = width/2;
int halfHeight = height/2;
while((halfWidth/inSampleSize)>=reqWidth&& (halfHeight/inSampleSize)>=reqHeight){
inSampleSize*=2;
Log.i("========","calculateSampleSize inSampleSize:"+inSampleSize);
}
return inSampleSize;
}
三:Bitmap其他用法
1、图片旋转指定角度
// 图片旋转指定角度
private Bitmap rotateImage(Bitmap image, final int degree) {
int width = image.getWidth();
int height = image.getHeight();
if (width > height) {
Matrix matrix = new Matrix();
//matrix.postTranslate(2,3);//平移
matrix.postRotate(degree);
if (image != null && !image.isRecycled()) {
Bitmap resizedBitmap = Bitmap.createBitmap(image, 0, 0, width, height, matrix, true);
return resizedBitmap;
} else {
return null;
}
} else {
return image;
}
}
2、图片的放大和缩小
public Bitmap scaleMatrixImage(Bitmap oldbitmap, float scaleWidth, float scaleHeight) {
Matrix matrix = new Matrix();
matrix.postScale(scaleWidth,scaleHeight);// 放大缩小比例
Bitmap ScaleBitmap = Bitmap.createBitmap(oldbitmap, 0, 0, oldbitmap.getWidth(), oldbitmap.getHeight(), matrix, true);
return ScaleBitmap;
}
更多 Matrix 相关知识
2、图片合成
private Bitmap createStarBitmap(float grade, int maxGrade) {
Bitmap empty_star = BitmapFactory.decodeResource(getResources(), R.drawable.empty_star); // 空星
Bitmap normal_star = BitmapFactory.decodeResource(getResources(), R.drawable.normal_star); // 实星
Bitmap half_star = BitmapFactory.decodeResource(getResources(), R.drawable.half_star);
; // 半星
int star_width = empty_star.getWidth();
int star_height = empty_star.getHeight();
Bitmap newb = Bitmap.createBitmap(star_width * 5, star_height, Bitmap.Config.ARGB_8888);// 创建一个底层画布
Canvas cv = new Canvas(newb);
for (int i = 0; i < maxGrade; i++) {
if (i < grade && i + 1 > grade) // 画半星
{
cv.drawBitmap(half_star, star_width * i, 0, null);// 画图片的位置
} else if (i < grade) // 画实心
{
cv.drawBitmap(normal_star, star_width * i, 0, null);// 画图片的位置
} else
// 画空心
{
cv.drawBitmap(empty_star, star_width * i, 0, null);// 画图片的位置
}
}
// save all clip
cv.save(Canvas.ALL_SAVE_FLAG);// 保存
// store
cv.restore();// 存储
return newb;
}
activity中调用
Bitmap bm = createStarBitmap(3.5f, 5);
imageview.setImageBitmap(bm);
3、图片圆角
public Bitmap toRoundCorner(Bitmap bitmap, int pixels) {
Bitmap roundCornerBitmap = Bitmap.createBitmap(bitmap.getWidth(), bitmap.getHeight(), Bitmap.Config.ARGB_8888);
Canvas canvas = new Canvas(roundCornerBitmap);
int color = 0xff424242;// int color = 0xff424242;
Paint paint = new Paint();
paint.setColor(color);
// 防止锯齿
paint.setAntiAlias(true);
Rect rect = new Rect(0, 0, bitmap.getWidth(), bitmap.getHeight());
RectF rectF = new RectF(rect);
float roundPx = pixels;
// 相当于清屏
canvas.drawARGB(0, 0, 0, 0);
// 先画了一个带圆角的矩形
canvas.drawRoundRect(rectF, roundPx, roundPx, paint);
paint.setXfermode(new PorterDuffXfermode(PorterDuff.Mode.SRC_IN));
// 再把原来的bitmap画到现在的bitmap!!!注意这个理解
canvas.drawBitmap(bitmap, rect, rect, paint);
return roundCornerBitmap;
}
4、将Bitmap转换成drawable
Drawable newBitmapDrawable = new BitmapDrawable(bitmap);
还可以从BitmapDrawable中获取Bitmap对象
Bitmap bitmap = new BitmapDrawable.getBitmap();
5、drawable转换成Bitmap
public static Bitmap drawableToBitmap(Drawable drawable) {
Bitmap bitmap = Bitmap.createBitmap(
drawable.getIntrinsicWidth(),
drawable.getIntrinsicHeight(),
drawable.getOpacity() != PixelFormat.OPAQUE ? Bitmap.Config.ARGB_8888 : Bitmap.Config.RGB_565
);
Canvas canvas = new Canvas(bitmap);
drawable.setBounds(0, 0, drawable.getIntrinsicWidth(), drawable.getIntrinsicHeight());
drawable.draw(canvas);
return bitmap;
}
7、图片裁剪
public Bitmap cutImage(Bitmap bitmap, int reqWidth, int reqHeight) {
Bitmap newBitmap = null;
if (bitmap.getWidth() > reqWidth && bitmap.getHeight() > reqHeight) {
bitmap = Bitmap.createBitmap(bitmap, 0, 0, reqWidth, reqHeight);
} else {
bitmap = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight());
}
return bitmap;
}
8、图片保存到sd
public void savePic(Bitmap bitmap,String path) {
File file = new File(path);
FileOutputStream fileOutputStream = null;
try {
file.createNewFile();
fileOutputStream = new FileOutputStream(file);
bitmap.compress(Bitmap.CompressFormat.PNG, 100, fileOutputStream);
fileOutputStream.flush();
} catch (IOException e) {
e.printStackTrace();
} finally {
try {
if (fileOutputStream != null) {
fileOutputStream.close();
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
四:使用Bitmap的注意事项
1、不用的Bitmap及时释放
if (!bmp.isRecycle()) {
bmp.recycle(); //回收图片所占的内存
bitmap = null;
system.gc(); //提醒系统及时回收
}
虽然调用recycle()并不能保证立即释放占用的内存,但是可以加速Bitmap的内存的释放。
释放内存以后,就不能再使用该Bitmap对象了,如果再次使用,就会抛出异常。所以一定要保证不再使用的时候释放。比如,如果是在某个Activity中使用Bitmap,就可以在Activity的onStop()或者onDestroy()方法中进行回收。
2、捕获异常
因为Bitmap非常耗内存,了避免应用在分配Bitmap内存的时候出现OutOfMemory异常以后Crash掉,需要特别注意实例化Bitmap部分的代码。通常,在实例化Bitmap的代码中,一定要对OutOfMemory异常进行捕获。很多开发者会习惯性的在代码中直接捕获Exception。但是对于OutOfMemoryError来说,这样做是捕获不到的。因为OutOfMemoryError是一种Error,而不是Exception。
Bitmap bitmap = null;
try {
// 实例化Bitmap
bitmap = BitmapFactory.decodeFile(path);
} catch (OutOfMemoryError e) {
}
if (bitmap == null) {
return defaultBitmapMap; // 如果实例化失败 返回默认的Bitmap对象
}
3、【缓存通用的Bitmap对象】
有时候,可能需要在一个Activity里多次用到同一张图片。比如一个Activity会展示一些用户的头像列表,而如果用户没有设置头像的话,则会显示一个默认头像,而这个头像是位于应用程序本身的资源文件中的。如果有类似上面的场景,就可以对同一Bitmap进行缓存。如果不进行缓存,尽管看到的是同一张图片文件,但是使用BitmapFactory类的方法来实例化出来的Bitmap,是不同的Bitmap对象。缓存可以避免新建多个Bitmap对象,避免内存的浪费。在Android应用开发过程中所说的缓存有两个级别,一个是硬盘缓存,一个是内存缓存。
4、图片的质量压缩
上述用inSampleSize压缩是尺寸压缩,Android中还有一种压缩方式叫质量压缩。质量压缩是在保持像素的前提下改变图片的位深及透明度等,来达到压缩图片的目的,经过它压缩的图片文件大小(kb)会有改变,但是导入成bitmap后占得内存是不变的,宽高也不会改变。因为要保持像素不变,所以它就无法无限压缩,到达一个值之后就不会继续变小了。显然这个方法并不适用与缩略图,其实也不适用于想通过压缩图片减少内存的适用,仅仅适用于想在保证图片质量的同时减少文件大小的情况而已
private void compressImage(Bitmap image, int reqSize) {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
image.compress(Bitmap.CompressFormat.JPEG, 100, baos);// 质量压缩方法,这里100表示不压缩,
int options = 100;
while (baos.toByteArray().length / 1024 > reqSize) { // 循环判断压缩后的图片是否大于reqSize,大于则继续压缩
baos.reset();//清空baos
image.compress(Bitmap.CompressFormat.JPEG, options, baos);// 这里压缩options%,把压缩后的数据放到baos中
options -= 10;
}
// 把压缩后的baos放到ByteArrayInputStream中
ByteArrayInputStream isBm = new ByteArrayInputStream(baos.toByteArray());
//decode图片
Bitmap bitmap = BitmapFactory.decodeStream(isBm, null, null);
}
CompressFormat解析:
- Bitmap.CompressFormat.JPEG:表示以JPEG压缩算法进行图像压缩,压缩后的格式可以是”.jpg”或者”.jpeg”,是一种有损压缩。
- Bitmap.CompressFormat.PNG:表示以PNG压缩算法进行图像压缩,压缩后的格式可以是”.png”,是一种无损压缩。
- Bitmap.CompressFormat.WEBP:表示以WebP压缩算法进行图像压缩,压缩后的格式可以是”.webp”,是一种有损压缩,质量相同的情况下,WebP格式图像的体积要比JPEG格式图像小40%。美中不足的是,WebP格式图像的编码时间“比JPEG格式图像长8倍”。
5、Android加载大量图片内存溢出解决方案:
- 尽量不要使用setImageBitmap或setImageResource或BitmapFactory.decodeResource来设置一张大图,因为这些函数在完成decode后,最终都是通过java层的createBitmap来完成的,需要消耗更多内存,可以通过BitmapFactory.decodeStream方法,创建出一个bitmap,再将其设为ImageView的 source
- 使用BitmapFactory.Options对图片进行压缩(上述第二部分)
- 运用Java软引用,进行图片缓存,将需要经常加载的图片放进缓存里,避免反复加载
参考博客: