数据结构—排序、查找、图论和字符串算法之Java实例

一:引言

在编程的海洋中,算法是程序员的灵魂之光。它们不仅指引着代码的前进方向,更能解决难题,提升效率。虽然各式各样的算法琳琅满目,但其中有一些却是每位程序员必定会遇到且应当深刻掌握的。本文将带您走进这些至关重要的算法世界,一探究竟!

二:常见算法介绍

1. 排序算法

排序算法是数据整理的利器,它们能将混乱的数据有序化。快速排序、归并排序、插入排序和选择排序等是常见的排序算法。以下是各排序的Java示例代码:

// 快速排序
public void quickSort(int[] arr, int low, int high) {
    if (low < high) {
        int pivotIndex = partition(arr, low, high); // 分区操作,找到基准元素的正确位置
        quickSort(arr, low, pivotIndex - 1); // 对基准元素左边的子数组进行递归排序
        quickSort(arr, pivotIndex + 1, high); // 对基准元素右边的子数组进行递归排序
    }
}

private int partition(int[] arr, int low, int high) {
    int pivot = arr[high]; // 选择数组的最后一个元素作为基准元素
    int i = low - 1; // i 指向比基准元素小的元素的最后位置
    for (int j = low; j < high; j++) {
        if (arr[j] < pivot) {
            i++;
            swap(arr, i, j); // 交换元素,将比基准元素小的元素放在左侧
        }
    }
    swap(arr, i + 1, high); // 将基准元素放到正确的位置上
    return i + 1; // 返回基准元素的索引
}

// 归并排序
public void mergeSort(int[] arr, int left, int right) {
    if (left < right) {
        int mid = left + (right - left) / 2;
        mergeSort(arr, left, mid); // 递归排序左半部分
        mergeSort(arr, mid + 1, right); // 递归排序右半部分
        merge(arr, left, mid, right); // 合并两个有序子数组
    }
}

// 合并两个有序子数组的操作
private void merge(int[] arr, int left, int mid, int right) {
    int n1 = mid - left + 1;
    int n2 = right - mid;
    int[] leftArr = new int[n1];
    int[] rightArr = new int[n2];

    for (int i = 0; i < n1; i++) {
        leftArr[i] = arr[left + i];
    }
    for (int j = 0; j < n2; j++) {
        rightArr[j] = arr[mid + 1 + j];
    }

    int i = 0, j = 0, k = left;
    while (i < n1 && j < n2) {
        if (leftArr[i] <= rightArr[j]) {
            arr[k++] = leftArr[i++];
        } else {
            arr[k++] = rightArr[j++];
        }
    }

    while (i < n1) {
        arr[k++] = leftArr[i++];
    }
    while (j < n2) {
        arr[k++] = rightArr[j++];
    }
}

// 插入排序
public void insertionSort(int[] arr) {
    int n = arr.length;
    for (int i = 1; i < n; i++) {
        int key = arr[i];
        int j = i - 1;
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j]; // 移动大于当前元素的元素
            j--;
        }
        arr[j + 1] = key; // 插入当前元素到正确位置
    }
}

// 选择排序
public void selectionSort(int[] arr) {
    int n = arr.length;
    for (int i = 0; i < n - 1; i++) {
        int minIndex = i;
        for (int j = i + 1; j < n; j++) {
            if (arr[j] < arr[minIndex]) {
                minIndex = j; // 找到最小元素的索引
            }
        }
        swap(arr, i, minIndex); // 将最小元素放到当前位置
    }
}

// 交换数组中两个元素的位置
private void swap(int[] arr, int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

2. 查找算法

查找算法用于在数据集中寻找特定元素。二分查找是常见的高效算法,以下是其Java示例代码:

// 二分查找算法
public int binarySearch(int[] arr, int target) {
    int low = 0; // 左边界
    int high = arr.length - 1; // 右边界
    while (low <= high) {
        int mid = low + (high - low) / 2; // 计算中间元素的索引
        if (arr[mid] == target) {
            return mid; // 找到目标元素,返回索引
        } else if (arr[mid] < target) {
            low = mid + 1; // 目标在右侧,调整左边界
        } else {
            high = mid - 1; // 目标在左侧,调整右边界
        }
    }
    return -1; // 目标元素未找到
}

3. 图论算法

图论算法处理图结构,如社交网络和地图。广度优先搜索(BFS)和深度优先搜索(DFS)是基础算法,以下是DFS的Java示例代码:

import java.util.*;

public class Graph {
    private Map<Integer, List<Integer>> graph = new HashMap<>();

    public void addEdge(int vertex, int neighbor) {
        graph.putIfAbsent(vertex, new ArrayList<>());
        graph.get(vertex).add(neighbor);
    }

    // 深度优先搜索算法
    public void dfs(int start) {
        boolean[] visited = new boolean[graph.size()];
        dfsUtil(start, visited);
    }

    private void dfsUtil(int vertex, boolean[] visited) {
        visited[vertex] = true; // 标记当前顶点为已访问
        System.out.print(vertex + " ");

        for (int neighbor : graph.getOrDefault(vertex, Collections.emptyList())) {
            if (!visited[neighbor]) {
                dfsUtil(neighbor, visited); // 递归访问未访问的邻居顶点
            }
        }
    }

    public static void main(String[] args) {
        Graph graph = new Graph();
        graph.addEdge(0, 1);
        graph.addEdge(0, 2);
        graph.addEdge(1, 2);
        graph.addEdge(2, 0);
        graph.addEdge(2, 3);
        graph.addEdge(3, 3);

        System.out.println("深度优先遍历结果:");
        graph.dfs(2); // 从顶点2开始深度优先遍历
    }
}

在这里插入图片描述

4. 字符串算法

字符串算法处理文本数据,如搜索、匹配和替换。KMP算法是高效的字符串匹配算法,以下是其Java示例代码:

public class KMPAlgorithm {
    // KMP算法
    public void kmpSearch(String text, String pattern) {
        int m = text.length();
        int n = pattern.length();
        int[] lps = new int[n]; // 长度为n的部分匹配表

        computeLPSArray(pattern, lps); // 构建部分匹配表

        int i = 0, j = 0;
        while (i < m) {
            if (pattern.charAt(j) == text.charAt(i)) {
                i++;
                j++;
            }
            if (j == n) {
                System.out.println("Pattern found at index " + (i - j));
                j = lps[j - 1];
            } else if (i < m && pattern.charAt(j) != text.charAt(i)) {
                if (j != 0) {
                    j = lps[j - 1];
                } else {
                    i++;
                }
            }
        }
    }

    private void computeLPSArray(String pattern, int[] lps) {
        int length = 0; // 用于记录最长公共前后缀的长度
        int i = 1;
        lps[0] = 0; // 首位不可能存在公共前后缀
        while (i < pattern.length()) {
            if (pattern.charAt(i) == pattern.charAt(length)) {
                length++;
                lps[i] = length;
                i++;
            } else {
                if (length != 0) {
                    length = lps[length - 1]; // 回退到前一个公共前后缀的长度
                } else {
                    lps[i] = 0;
                    i++;
                }
            }
        }
    }

    public static void main(String[] args) {
        KMPAlgorithm kmp = new KMPAlgorithm();
        String text = "ABABDABACDABABCABAB";
        String pattern = "ABABCABAB";
        System.out.println("KMP 算法结果:");
        kmp.kmpSearch(text, pattern);
    }
}

在这里插入图片描述

三:重点算法总结

掌握这些核心算法是每个程序员的必然选择。它们不仅在计算机领域有广泛应用,还培养了抽象思维和问题解决能力。通过学习和实践,你可以在编程领域中展现出色的技能。

无论是排序、查找、图论还是字符串算法,它们都是你在编程之旅中的得力助手。勇敢地面对挑战,将这些算法娴熟地融入你的工具箱,成为编程世界的探险家和创造者!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热心码民阿振

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值