矩阵前缀和(暑期训练3)

例1---UVA108

题意:

在给出的矩阵当中,找出一个子矩形矩阵可以使得里面加起来的值是所有子矩阵中最大的。

思路:

枚举第i行到第j行的和,再从i到j行的各列和依次累加,存入数组b,这样就转为一维的求数组b的最大连续子序列和的问题了。

AC代码:

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<limits.h>
#include<algorithm>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
const int N=150;
int a[N][N],b[N],c[N];
int main()
{
    int n;
    while(cin>>n)
    {
        for(int i=0;i<n;i++)
            for(int j=0;j<n;j++)
                cin>>a[i][j];
        int maxn=INT_MIN;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                memset(b,0,sizeof(b));
                for(int x=i;x<n;x++)
                {
                    for(int y=j;y<n;y++)
                    {
                        if(y==j)
                            c[y]=a[x][y];
                        else
                            c[y]=c[y-1]+a[x][y];
                        b[y]+=c[y];
                        maxn=max(maxn,b[y]);
                    }
                }

            }
        }
        cout<<maxn<<endl;
    }
    return 0;
}

例2---天上的星星

题意:

思路:

记录x,y点的亮度:

 a[x][y]+=w

子矩阵前缀和:

sum[i][j]=a[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];

 某矩阵区域内的和:

 ans=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1];

AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<algorithm>
using namespace std;
typedef long long ll;
int a[2010][2010];
int sum[2010][2010];
int main()
{
   int n,x,y,w;
   cin>>n;
   memset(sum,0,sizeof(sum));
   for(int i=1;i<=n;i++)
   {
       cin>>x>>y>>w;
       x++;
       y++;
      
   }
   for(int i=1;i<=2005;i++)
   {
       for(int j=1;j<=2005;j++)
       {
           sum[i][j]=a[i][j]+sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
       }
   }
   int q,x1,y1,x2,y2,ans;
   cin>>q;
   while(q--)
   {
       cin>>x1>>y1>>x2>>y2;
       x1++;
       y1++;
       x2++;
       y2++;
       ans=sum[x2][y2]-sum[x1-1][y2]-sum[x2][y1-1]+sum[x1-1][y1-1];
       cout<<ans<<endl;
   }
}

例3---CF1060C

题意:

给你两个数组a,b,它们构成一个矩阵c,cij=ai*bj,即两个矩阵相乘,在这个矩阵中找一个子矩阵使得这个子矩阵的和小于等于x但是矩阵的面积是最大的。

思路:

子矩阵的和=(a[1]+a[2]+a[3]+…+a[j])(b[1]+b[2]+…+b[i])这就是i*j矩阵的最小值。那我们应该做的就是找到前缀和最小的。在代码里的mina[i]=j;代表长度为i的数组最小值是j。

AC代码:

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=2005;
typedef long long ll;
ll a[N],b[N],mina[N],minb[N];
int main()
{
    ll n,m,k,x,ans;
	cin>>n>>m;
	a[0]=b[0]=0;
	for(int i=1;i<=n;i++)
    {
		cin>>a[i];
		a[i]+=a[i-1];
	}
	for(int i=1;i<=m;i++)
	{
		cin>>b[i];
		b[i]+=b[i-1];
	}
	cin>>k;
	memset(mina,0x3f,sizeof mina);
	memset(minb,0x3f,sizeof minb);
	for(int i=1;i<=n;i++)
    {
        for(int j=i;j<=n;j++)
        {
            mina[i]=min(mina[i],a[j]-a[j-i]);
        }
    }
	for(int i=1;i<=m;i++)
    {
        for(int j=i;j<=m;j++)
        {
            minb[i]=min(minb[i],b[j]-b[j-i]);
        }
    }
    ans=0;
	for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(mina[i]*minb[j]<=k)
            {
                if(ans<i*j)
                {
                    ans=i*j;
                }
            }
        }
    }
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值