概率破玄机,统计解迷离

本文探讨了概率论和统计学的重要性及其在揭示随机现象规律中的作用。通过历史背景和经典案例,阐述了概率计算、直觉判断的误区以及条件概率在实际问题中的应用,如生日悖论、竞赛规则分析和疾病诊断的确认率。文章强调,概率论可以帮助我们理解和解决日常生活中的复杂问题,揭示看似随机现象背后的确定性。
摘要由CSDN通过智能技术生成

概率破玄机,统计解迷离

  概率论起源于中世纪的欧洲,那时盛行掷骰子赌博,提出了许多有趣的概率问题。当时法国的帕斯卡(Blaise Pascal)、费尔马(Pierre de Fermat)和旅居巴黎的荷兰数学家惠更斯(Christiaan Huygens)都对此类问题感兴趣,他们用组合数学研究了许多与掷骰子有关的概率计算问题。20世纪30年代柯尔莫哥洛夫(Andrey Nikolaevich Kolmogorov)提出概率公理化, 随后概率论迅速发展成为数学领域里一个独立分支。
  随机现象背后是隐藏某些规律的,概率论的一项基本任务就是揭示这些规律。现在概率论已经发展成为数学领域里一个相对充满活力的学科,并且在工程、国防、生物、经济和金融等领域得到了广泛的应用。
  统计学是一门具有方法论性质的应用性科学, 它在概率论基楚上, 发展出一系列的原理和方法,研究如何采集和整理反映事物总体资训的数字资料,并依据这些复杂的资料(称为样本)对总体的特征和现象背后隐藏的规律进行分析和推断。
  法国数学家拉普拉斯(Pierre-Simon marquis de Laplace)有句名言:“生活中最重要的问题,绝大部分其实只是概率问题”。当代国际著名的统计学家 C. R.劳(Rao)说过:“如果世界中的事件完全不可预测的随机发生, 则我们的生活是无法忍受的。而与此相反, 如果每一件事都是确定的、完全可以预测的,则我们的生活将是无趣的。”
  我长期从事概率论和随机分析研究,对概率统计学科的本质有些领悟,曾写过下面这首“悟道诗”:

随机非随意,概率破玄机;
无序隐有序,统计解迷离。

  本文试图通过若干日常生活中的一些例子来向大家展示概率是如何破玄机和统计是如何解迷离的。


1.什么是随机和随意?

  在社会和自然界中,我们经常遇到一些事件,因为有很多不确定的偶然因素很难判断它会发生或不发生, 这样的事件就是所谓的随机事件或偶然事件。
  概率则是对随机事件发生的可能性大小的一个度量。必然要发生的事件的概率规定为 1 ,不可能发生的事件的概率规定为 0 ,其他随机事件发生的概率介乎 0 1 之间。
  例如,拋一枚匀质的硬币,出现正面或反面的概率均为二分之一;掷一个匀质的骰子,每个面出现朝上的概率均为六分之一。在这两个例子中,每个简单事件(或“场景”)都是等可能发生的。一个复合事件(如掷骰子出现的点数是偶数)发生的概率就等于使得该复合事件发生的场景数目与可能场景总数之比。
  什么是随意?随意就是带有主观意识的一种随机。
  比方说,我们知道掷一枚匀质硬币出现正面或反面的概率都是 1/2 。如果让某人臆想一个相继掷 50 次硬币的可能结果,并用 1 0 分別表示出现“正面”和“反面”,在一张纸上写下来, 由于他考虑到接连多次出现正面或反面的可能性较小,在他写 1 0 时,可能有意识避免连写三个或四个以上的 1 0 ,这样产生的 01 序列就是“随意的”。它看似随机,但与真实做一次掷 50 次硬币记录下的結果在统计特性上是有区別的。
  随机现象背后是隐藏某些规律的, 概率论的一项基本任务就是揭示这些规律。

2.靠直觉做判断常常会出错

  下面是一个靠直觉做判断容易出错的例子。 某人新来邻居是一对夫妇, 只知道这对夫妇有两个非双胞胎孩子。 某天, 看到爸爸领着一男孩出门了, 问这对夫妇的另一孩子也是男孩的概率是多大?许多人可能给出的答案是 1/2 , 因为生男生女的概率都是 1/2 。但实际上正确答案应该是 1/3 ,因为在已知该家至少有一男孩的前提下,他家两个小孩可能的场景是三个(按孩子出生先后次序) :“男男”,“男女”,“女男”。只有“男男”才符合“另一孩子也是男孩”这一场景。如果突然从这家传出婴儿的啼哭声,“另一孩子也是男孩”的概率就变成 1/2 了,因为这时可以断定出了门的那个男孩是老大,可能的场景就变成两个了(按出生先后次序) :男男,男女。
  从这两个简单初等概率问题可以悟出一个道理:靠直觉做判断常常会出错。计算一个随机事件发生的概率, 重要的是要对此事件得以发生的所有可能场景有正确的判断。

3.改变生育政策会引起性別比例失衡吗?

  下面这个例子更加说明单靠直觉做判断容易出错。假定有一项新的生育政策, 规定头胎生男孩的不可以生第二胎,但允许头胎生女孩的生第二胎(当然也可以选择不再生),试问:这一政策会引起性別比例失衡吗? 从直觉上看,似乎这一政策有利于生男孩,但这一担心是多余的, 因为生男生女的概率都是 1/2 ,第一胎的小孩性別比例不会失衡,第二胎的小孩性別比例也不会失衡,总体来说,生育政策不回造成性別比例失衡。由于女人生小孩的胎数有一致的上界(比如说不超过 20 胎),用概率分析可以断言:即使有政策,允许妇女直到首次生出男孩才终止生育, 理论上讲也不会引起性別比例失衡。
  如何解释现实中存在的性別比例失衡呢? 一方面,由于过去曾允许怀孕期间做性別检验, 有的妇女发现怀的是女孩就堕胎了; 另一方面, 一些人重男轻女思想造成幼年女孩夭折的比例高于男孩。

4.“生日悖论”

   n 个人中至少有两人生日相同的概率是多少?这是有名的“生日问题”。令人难以置信的是:随机选取的 23 人中至少两人生日相同的概率居然超过 50% , 50 人中至少两人生日相同的概率居然达到 97% !例如,假定一个中学有二十个班,每个班平均有 50 个学生,你可以调查一下, 大概会有十几个班都有至少两个生日相同的学生。这和人们的直觉是抵触的。因此这一结果被称为“生日悖论”。
  其实有关概率的计算很简单, 首先计算 50 个人生日都不相同的概率。 第一个人的生日有 365 个可能性,第二个人如果生日与第一个人不同,他的生日有 364 个可能性,依次类推,直到第 50 个人的生日有 316 个可能性,所以 50 人生日都不同的可能组合方式就是 365 364 363 一直乘到 316 ,但由于每个人的生日是独立的,总的可能组合是 365 50 次方,这样一来, 50 个人生日都不相同的概率就等于两个组合数之比,这个概率非常小,只有 3% ,至少两个人生日相同的概率等于 1 减去 3% ,得到 97% ,这样概率就计算出来了。
  注意: 如果预先选定一个生日,随机选取 125 人、 250 人、 500 人、 1000 人,出现某人生日正好是选定生日的概率分別大约只有 30%50%75%94% ,比想象的小得多。

5.“三枚银币”骗局

  某人在街头设一赌局。他向观众出示了放在帽子里的三枚银币(记为甲、乙、丙),银币甲的两面涂了黑色,银币丙的两面涂了红色,银币乙一面涂了黑色,另一面涂了红色。
  游戏规则是:他让一个观众从帽子里任意取出一枚银币放到桌面上(这里不用“投掷银币”是为了避免暴露银币两面的颜色),然后由设局人猜银币另一面的颜色,如果猜中了,该参与者付给他1元钱,如果猜错了,他付给该参与者1元钱。
  试问:这一赌局是公平的吗? 从直觉上看, 无论取出的银币所展示的一面是黑色或红色,另一面是红色或黑色的概率都是 1/2 , 这一赌局似乎是公平的。但实际上不公平,设局者只要每次“猜”背面和正面是同一颜色,他的胜算概率是 2/3 , 因为从这三张牌随机选取一枚银币,其两面涂相同颜色的概率就是 2/3 。如果有许多人参与赌局, 大概有 1/3 的人会赢钱, 2/3 的人会输钱。
  下面进一步用“场景分析”来戳穿“三枚银币”骗局。假定参与者取出并放到桌面上的银币展示面是黑色,则这枚银币只可能是银币甲或乙。“银币展示面是黑色”这一随机事件有三种可能场景:银币甲的“某一面”和“另一面”,或银币乙的“涂黑一面“。因此,这枚银币是银币甲的概率是 2/3 。展示面是红色情形完全类似。因此, 每次“猜”另一面和展示面是同一颜色的胜算概率是 2/3
  下面这个例子是从“三枚银币”骗局衍生出来的。假设在你面前放置三个盒子,盒子里分别放了金币两枚、银币两枚、金银币各一枚。你随机选取一个盒子并从中摸出一枚钱币,发现是一枚金币。试问:该盒子装有两枚金币的概率有多大? 请你给出答案。

6.在猜奖游戏中改猜是否增大中奖概率?

  这一问题出自美国的一个电视游戏节目, 问题的名字来自该节目的主持人蒙提 • 霍尔, 上世纪90年代曾在美国引起广泛和热烈的讨论。假定在台上有三扇关闭的门,其中一扇门后面有一辆汽车, 另外两扇门后面各有一只山羊。 主持人是知道哪扇门后面有汽车的。 当竞猜者选定了一扇门但尚未开启它的时候,节目主持人去开启剩下两扇门中的一扇,露出的是山羊。主持人会问参赛者要不要改猜另一扇未开启的门。问题是:改猜另一扇未开启的门是否比不改猜赢得汽车的概率要大?正确的答案是:改猜能增大赢得汽车的概率,从原来的 1/3 增大为 2/3 。这是因为竞猜者选定的一扇门后面有汽车的概率是 1/3 ,在未选定的两扇门后面有汽车的概率是 2/3 ,主持人开启其中一扇门把这门后面有汽车给排除了,所以另一扇未开启的门后面有汽车的概率是 2/3
  也许有人对此答案提出质疑,认为在剩下未开啟的两扇门后有汽车的概率都是 1/2 ,因此不需要改猜。为消除这一质疑,不妨假定有 10 扇门的情形,其中一扇门后面有一辆汽车,另外 9 扇门后面各有一只山羊。 当竞猜者猜了一扇门但尚未开启时, 主持人去开启剩下 9 扇门中的 8 扇,露出的全是山羊。显然:原先猜的那扇门后面有一辆汽车的概率只是 1/10 ,这时改猜另一扇未开啟的门赢得汽车的概率是 9/10

7.条件概率和全概率公式

  在上面好几个例子中,都涉及“条件概率问题”。设 AB 是两个事件,如果已知 A B 各自发生的概率为 P(A) P(B), 又知道 A B 同时都发生的概率为 P(AB) ,则在事件 A 发生的条件下事件 B 发生的概率(称为事件 B 关于事件 A 的条件概率,记为 P(B|A) 显然为 P(B|A)=P(AB)/P(A) 。这里所谓的“条件事件 A ”和“事件 B ”的发生,在时间上没有先后次序。在实际问题中,通常“条件事件 A ”表示结果,即知道事件 A 已经发

  • 6
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值