题目描述
帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的 n \times mn×m 的矩阵,矩阵中的每个元素 a_{i,j}ai,j 均为非负整数。游戏规则如下:
- 每次取数时须从每行各取走一个元素,共 nn 个。经过 mm 次后取完矩阵内所有元素;
- 每次取走的各个元素只能是该元素所在行的行首或行尾;
- 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值 \times 2^i×2i,其中 ii 表示第 ii 次取数(从 11 开始编号);
- 游戏结束总得分为 mm 次取数得分之和。
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入格式
输入文件包括 n+1n+1 行:
第一行为两个用空格隔开的整数 nn 和 mm。
第 2\sim n+12∼n+1 行为 n \times mn×m 矩阵,其中每行有 mm 个用单个空格隔开的非负整数。
输出格式
输出文件仅包含 11 行,为一个整数,即输入矩阵取数后的最大得分。
输入输出样例
输入 #1
2 3 1 2 3 3 4 2
输出 #1
82
说明/提示
【数据范围】
对于 60\%60% 的数据,满足 1\le n,m\le 301≤n,m≤30,答案不超过 10^{16}1016。
对于 100\%100% 的数据,满足 1\le n,m\le 801≤n,m≤80,0\le a_{i,j}\le10000≤ai,j≤1000。
【题目来源】
NOIP 2007 提高第三题。
#include <bits/stdc++.h>
using namespace std;
#define N (int)(85)
const int B=1e4;
int n,m,a[N];
struct bg {
int num[505],len;
bg() {
memset(num,0,sizeof(num));
len=0;
}
void print() {
cout << num[len];
for(int i=len-1; i>0; i--) {
if(!num[i])cout << "0000";
else {
for(int k=10; k*num[i]<B; k*=10)
cout << "0";
cout << num[i];
}
}
}
} f[N][N],base[N],ans;
bg operator+(bg a,bg b) {
bg c;
c.len=max(a.len,b.len);
int jw=0;
for(int i=1; i<=c.len; i++) {
c.num[i]=a.num[i]+b.num[i]+jw;
jw=c.num[i]/B;
c.num[i]%=B;
}
if(jw>0)
c.num[++c.len]=jw;
return c;
}
bg operator*(bg a,int b) {
bg c;
c.len=a.len;
int jw=0;
for(int i=1; i<=c.len; i++) {
c.num[i]=a.num[i]*b+jw;
jw=c.num[i]/B;
c.num[i]%=B;
}
while(jw>0)
c.num[++c.len]=jw%B,jw/=B;
return c;
}
bg max(bg a,bg b) {
if(a.len!=b.len)return a.len<b.len?b:a;
for(int i=a.len; i>0; i--)
if(a.num[i]!=b.num[i])
return a.num[i]>b.num[i]?a:b;
return a;
}
void init() {
base[0].num[1]=1;
base[0].len=1;
for(int i=1; i<=m+2; i++)
base[i]=base[i-1]*2;
}
signed main() {
// freopen("check.in","r",stdin);
// freopen("check.out","w",stdout);
cin >> n >> m;
init();
bg res;
while(n--) {
memset(f,0,sizeof(f));
for(int i=1; i<=m; i++)
cin >> a[i];
for(int i=1; i<=m; i++)
for(int j=m; j>=i; j--) {
f[i][j]=max(f[i][j],f[i-1][j]+base[m-j+i-1]*a[i-1]);
f[i][j]=max(f[i][j],f[i][j+1]+base[m-j+i-1]*a[j+1]);
}
bg mx;
for(int i=1; i<=m; i++)
mx=max(mx,f[i][i]+base[m]*a[i]);
res=res+mx;
}
res.print();
return 0;
}