P1011 [NOIP1998 提高组] 车站

该文描述了一个关于火车在各站上下车人数的问题,其中上车人数遵循斐波那契数列的规律。通过分析始发站和终点站的人数,提出了计算中间车站人数的方法,特别是对于特定车站编号(x)的车上人数的计算。问题涉及到数学建模和编程解题策略。
摘要由CSDN通过智能技术生成

题目描述

火车从始发站(称为第 11 站)开出,在始发站上车的人数为 �a,然后到达第 22 站,在第 22 站有人上、下车,但上、下车的人数相同,因此在第 22 站开出时(即在到达第 33 站之前)车上的人数保持为 �a 人。从第 33 站起(包括第 33 站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第 (�−1)(n−1) 站),都满足此规律。现给出的条件是:共有 �n 个车站,始发站上车的人数为 �a ,最后一站下车的人数是 �m(全部下车)。试问 �x 站开出时车上的人数是多少?

输入格式

输入只有一行四个整数,分别表示始发站上车人数 �a,车站数 �n,终点站下车人数 �m 和所求的站点编号 �x。

输出格式

输出一行一个整数表示答案:从 �x 站开出时车上的人数。

输入输出样例

输入 #1复制

5 7 32 4

输出 #1复制

13

说明/提示

对于全部的测试点,保证 1≤�≤201≤a≤20,1≤�≤�≤201≤x≤n≤20,1≤�≤2×1041≤m≤2×104。

  • 在做之前,我们先找找规律:
  1. 第一站:上车 �a 人;车上有 �a 人;
  2. 第二站:假设上车 �u 人,则下车 �u 人;车上仍然是�a人;
  3. 第三站:上车人数等于前两站上车人数之和:�+�a+u 人,下车人数等于上次上车人数 �u 人;净上车人数为 �a 人;车上有 2�2a 人;
  4. 第四站:上车人数 =�+2�=a+2u,下车人数 =�+�=a+u;净上车人数 =�=u;车上有多少人呢?就是 2�+�2a+u;
  5. 第五站:上车人数 =2�+3�=2a+3u,下车人数 =�+2�=a+2u,净上车人数 =�+�=a+u;车上有 3�+2�3a+2u 人;
  6. 第六站:上车人数 =3�+5�=3a+5u,下车 2�+3�2a+3u 人,净上车人数 =�+2�=a+2u;车上有 4�+4�4a+4u 人……

这里不必在列下去了,发现规律了吗?

将第三站净上车人数看作x1,第四站看作�2x2,第五站为�3x3,第六站为�4x4,有 �1+�2=�3, �2+�3=�4…x1+x2=x3, x2+x3=x4…这不是斐波那契数列么?

  • 知道了起始人数�a,知道了终止人数,这里的�u就可求了; 不过计算机不认识方程,所以我们要想个办法:

因此我们要把�a和�u分开处理!!!

我们不妨把每一站中�a的关系看作�a的斐波那契数列,而�u的关系看作�u的斐波那契数列

  • 由于是从第三站开始出现了这样的规律,所以第一项为第三站,第二项就是第四站

我们不妨自己再次总结a的规律,于是得到下面的代码:

		int p=1,q=0,k=0,sum1=0;
		for(int i=1;i<=n-5;i++)
		{
			k=p+q;
			sum1+=k;
			p=q;
			q=k;
		}

常规斐波那契就不解释了,但注意,这里统计的���1sum1是�a的系数!

细心的小伙伴就会发现了,这里满足的条件是�>5n>5,其实�≤5n≤5也可以,但是代码较为复杂,后面说;

且注意:第三项a的系数为11,第四项为00,所以定义�=1p=1,�=0q=0; 这里 ���1=���1+2sum1=sum1+2(从第五项开始计算,前面还有2�2a,不能忽略)

  • 同样的,我们得到了计算�u系数的代码
		int e=0,t=1,g=0,sum2=0;
		for(int i=1;i<=n-5;i++)
		{
			g=e+t;
			sum2+=g;
			e=t;
			t=g;
		}

同样的���2=���2+1sum2=sum2+1;(第五项开始算,前面还有一个�u) 那么�=?u=?这个大家自己思考,后面给代码再给答案;


  • 以上内容针对�>5n>5,那么我们就可以较为整齐地处理�≤5n≤5的情况了。

这个如何处理?

大家思考一下,根据我们列出的上面的式子,车站数是肯定≥2≥2的,车最少要经过两站。那么无论�=2n=2还是33,输出的不都是�a么?后面的大家自己推理;

  • 那么对于�≤5n≤5也讨论完了,对于�>5n>5呢?

这时又与�x有关了,根据上面推导的斐波那契数列的规律,那到第�x站的�a有几个?�u有几个?(人数 =�∗�+�∗�=t∗a+i∗u)还是需要分类讨论的,没有做的思考一下,再看下面代码

if(x<=5)
		{
			if(x==1||x==2)cout<<?;
			else if(x==3)cout<<?;
			else if(x==4)cout<<?;
			else if(x==5)cout<<?;
		}
		else
		{
			
			for(int i=1;i<=x-?;i++)
			{
				k=p+q;
				sum1+=k;
				p=q;
				q=k;
			}
			sum1+=2;
			for(int i=1;i<=x-?;i++)
			{
				g=e+t;
				sum2+=g;
				e=t;
				t=g;
			}
			sum2+=1;

这里的“?”是什么供大家思考,参考我们以上的推导 防止作弊~

最后附上完整代码

#include<iostream>
using namespace std;
int a,n,m,x,u=1,z,y;
int main()
{
	cin>>a>>n>>m>>x;
	if(n<=5)
	{
		if(n==2||n==3)
		{
			cout<<a;
		}
		else if(n==4)
		{
			if(x==1||x==2)cout<<a;
			else if(x==3)cout<<a*2;
		}
		else if(n==5)
		{
			if(x==1||x==2)cout<<a;
			else if(x==3)cout<<a*2;
			else if(x==4)cout<<?;//防作弊
		}
	}
	else
	{
		int p=1,q=0,k=0,sum1=0;
		for(int i=1;i<=n-5;i++)
		{
			k=p+q;
			sum1+=k;
			p=q;
			q=k;
		}
		int s1=sum1+2;
		int e=0,t=1,g=0,sum2=0;
		for(int i=1;i<=n-5;i++)
		{
			g=e+t;
			sum2+=g;
			e=t;
			t=g;
		}
		int s2=sum2+1;
		int S=(m-s1*a)/s2;
		q=k=e=g=sum1=sum2=0;p=t=1;//重新初始化
		if(x<=5)
		{
			if(x==1||x==2)cout<<a;
			else if(x==3)cout<<a*2;
			else if(x==4)cout<<?;//防作弊
			else if(x==5)cout<<?;
		}
		else
		{
			
			for(int i=1;i<=x-?;i++)
			{
				k=p+q;
				sum1+=k;
				p=q;
				q=k;
			}
			sum1+=2;
			for(int i=1;i<=x-?;i++)
			{
				g=e+t;
				sum2+=g;
				e=t;
				t=g;
			}
			sum2+=1;
  			cout<<sum1*a+sum2*S;//这就是最后结果了;
		}
	}
	return 0;
} 

不知道大家看到这里是否清晰呢?不清楚可以评论,代码还有待优化,欢迎大家提出意见~

������ 2019.7.23Update 2019.7.23

使用LaTeX进行了渲染优化了码风,附上高清无码完整代码:

    #include<cstdio>
    using namespace std;
    int a, n, m, x, u=1, z, y;
    int main()
    {
        scanf("%d %d %d %d", &a, &n, &m, &x); 
        if(n <= 5) {
            if(n == 2||n == 3)
                printf("%d", a);
            else if(n == 4) {
                if(x == 1 || x == 2) printf("%d", a);
                else if(x == 3) printf("%d", a * 2);
            }
            else if(n == 5) {
                if(x == 1 || x == 2) printf("%d", a);
                else if(x == 3) printf("%d", a * 2);
                else if(x == 4) 
                    printf("%d", (m - a * 3) / 2 + a * 2);
            }
        }
        else {
            int p = 1, q = 0, k = 0, sum1 = 0;
            for(int i = 1; i <= n - 5; i++) { 	
                k = p + q;
                sum1 += k;
                p = q;
                q = k;
            }
            int s1 = sum1 + 2;
            int e = 0, t = 1, g = 0,sum2 = 0;
            for(int i = 1; i <= n - 5; i++) {
                g = e + t;
                sum2 += g;
                e = t;
                t = g;
            }
            int s2 = sum2 + 1;
            int S = (m - s1 * a) / s2;
            q = k = e = g = sum1 = sum2 = 0;
            p = t = 1;
            if(x <= 5) {
                if(x == 1 || x == 2) printf("%d", a);
                else if(x == 3)  printf("%d", a * 2);
                else if(x == 4) printf("%d", S + a * 2);
                else printf("%d", S * 2 + a * 3);
            }
            else {
                for(int i = 1; i <= x - 4; i++) {
                    k = p + q;
                    sum1 += k;
                    p = q;
                    q = k;
                }
                sum1 += 2;
                for(int i = 1; i <= x - 4; i++) {
                    g = e + t;
                    sum2 += g;
                    e = t;
                    t = g;
                }
                sum2 += 1;
                printf("%d", sum1 * a + sum2 * S);
            }
        }
        return 0;
    } 

不给代码感觉还是不太好?

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值