P1021 [NOIP1999 提高组] 邮票面值设计

该问题是一个组合优化问题,通过动态规划和递归搜索找到在给定邮票面值和数量限制下,能构成最大连续邮资值的方案。算法首先初始化状态,然后通过状态转移方程找到每个邮资值所需的最少数目的邮票,接着进行深度优先搜索,确定最佳邮票组合。最终输出的是选定的邮票面值和最大连续邮资值。
摘要由CSDN通过智能技术生成

题目描述

给定一个信封,最多只允许粘贴 �N 张邮票,计算在给定 �K(�+�≤15N+K≤15)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值 ���MAX,使在 11 至 ���MAX 之间的每一个邮资值都能得到。

例如,�=3N=3,�=2K=2,如果面值分别为 11 分、44 分,则在 1∼61∼6 分之间的每一个邮资值都能得到(当然还有 88 分、99 分和 1212 分);如果面值分别为 11 分、33 分,则在 1∼71∼7 分之间的每一个邮资值都能得到。可以验证当 �=3N=3,�=2K=2 时,77 分就是可以得到的连续的邮资最大值,所以 ���=7MAX=7,面值分别为 11 分、33 分。

输入格式

22 个整数,代表 �N,�K。

输出格式

输出共 22 行。

第一行输出若干个数字,表示选择的面值,从小到大排序。

第二行,输出 MAX=S,�S 表示最大的面值。

输入输出样例

输入 #1复制

3 2

输出 #1复制

1 3
MAX=7

//这题解是本蒟蒻看了朱羿恺凭栏等大佬的才写出来的 主要思路差不多主要是细节的解释给我们这种蒟蒻看的

//dp f[i]为拼i所需的最少数的个数 状态转移方程:f[i]:=min(f[i],f[j-a[i]]+1) 边界:f[0]:=0;

//dfs 搜索数的种数,每次取数取从上次取的数+1到之前取的数能拼到的最大+1,并通过dp求出如今所能取到得最大值

#include<iostream>
#include<cstring>//头文件
using namespace std;
int a[17],n,k,ans[17],maxn;//a【】表示这种方法的邮票,ans【】表示如今取得的解即要输出的
int dp(int t,int mx){
    int f[50000];//f[i]为拼i所需的最少数的个数
    f[0]=0;//边界
    for(int i=1;i<=a[t]*n;i++)
      f[i]=50000;//赋初值赋一个尽可能地大就可以了
    for(int i=1;i<=t;i++)            //从第一位找到目前的位数把所有已找的邮票都枚举 
      for(int j=a[i];j<=a[t]*n;j++)   //因为不可能找到比自己小的数,所以从自己开始找 
        f[j]=min(f[j],f[j-a[i]]+1);    //比较上几次已找到的最小需要位数和即将要找的相比较,取较小值 
for(int i=1;i<=a[t]*n;i++)
      if(f[i]>n)//如果所需最小的个数大于n就意味着这种情况不符合,但f【i-1】是符合的不然f【i-1】就会判断所以不符合返回i-1
        return i-1;
    return a[t]*n;//如果到a【t】*n的f【i】都满足意味着能取到的最大连续数就是a【t】*n
}
void dfs(int t,int mx){              // 为什么全部找完:因为多几张邮票肯定比少几张邮票可能的情况多,所以全部找完是最好的  
    if(t==k+1){        //如果所有邮票数已经找完,那么就和 maxn比较谁更大   
        if(mx>maxn){
            maxn=mx;
            for(int i=1;i<=t-1;i++)
              ans[i]=a[i];} //保存所需要的邮票面值  
        return;
        }
    for(int i=a[t-1]+1;i<=mx+1;i++){  //继续找:为了避免重复,下一张邮票要比上一张邮票大,所以上边界是a[t-1]+1,同时它不能比最大连续值+1还大,不然最大连续值的下一个数就永远连不起来了 
      a[t]=i;
      int x=dp(t,mx);   //动归寻找此时的最大连续数 
      dfs(t+1,x);
    }
}
int main(){
    cin>>n>>k;
    dfs(1,0);  //先从第一张开始找,第一张前面没有数,所以所连续的最大数为 0 
    for(int i=1;i<=k;i++)//输出 注意打空格以及大写换行即可
      cout<<ans[i]<<" ";
    cout<<endl;
    cout<<"MAX="<<maxn<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值