题目描述
给定一个信封,最多只允许粘贴 �N 张邮票,计算在给定 �K(�+�≤15N+K≤15)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值 ���MAX,使在 11 至 ���MAX 之间的每一个邮资值都能得到。
例如,�=3N=3,�=2K=2,如果面值分别为 11 分、44 分,则在 1∼61∼6 分之间的每一个邮资值都能得到(当然还有 88 分、99 分和 1212 分);如果面值分别为 11 分、33 分,则在 1∼71∼7 分之间的每一个邮资值都能得到。可以验证当 �=3N=3,�=2K=2 时,77 分就是可以得到的连续的邮资最大值,所以 ���=7MAX=7,面值分别为 11 分、33 分。
输入格式
22 个整数,代表 �N,�K。
输出格式
输出共 22 行。
第一行输出若干个数字,表示选择的面值,从小到大排序。
第二行,输出 MAX=S
,�S 表示最大的面值。
输入输出样例
输入 #1复制
3 2
输出 #1复制
1 3 MAX=7
//这题解是本蒟蒻看了朱羿恺凭栏等大佬的才写出来的 主要思路差不多主要是细节的解释给我们这种蒟蒻看的
//dp f[i]为拼i所需的最少数的个数 状态转移方程:f[i]:=min(f[i],f[j-a[i]]+1) 边界:f[0]:=0;
//dfs 搜索数的种数,每次取数取从上次取的数+1到之前取的数能拼到的最大+1,并通过dp求出如今所能取到得最大值
#include<iostream>
#include<cstring>//头文件
using namespace std;
int a[17],n,k,ans[17],maxn;//a【】表示这种方法的邮票,ans【】表示如今取得的解即要输出的
int dp(int t,int mx){
int f[50000];//f[i]为拼i所需的最少数的个数
f[0]=0;//边界
for(int i=1;i<=a[t]*n;i++)
f[i]=50000;//赋初值赋一个尽可能地大就可以了
for(int i=1;i<=t;i++) //从第一位找到目前的位数把所有已找的邮票都枚举
for(int j=a[i];j<=a[t]*n;j++) //因为不可能找到比自己小的数,所以从自己开始找
f[j]=min(f[j],f[j-a[i]]+1); //比较上几次已找到的最小需要位数和即将要找的相比较,取较小值
for(int i=1;i<=a[t]*n;i++)
if(f[i]>n)//如果所需最小的个数大于n就意味着这种情况不符合,但f【i-1】是符合的不然f【i-1】就会判断所以不符合返回i-1
return i-1;
return a[t]*n;//如果到a【t】*n的f【i】都满足意味着能取到的最大连续数就是a【t】*n
}
void dfs(int t,int mx){ // 为什么全部找完:因为多几张邮票肯定比少几张邮票可能的情况多,所以全部找完是最好的
if(t==k+1){ //如果所有邮票数已经找完,那么就和 maxn比较谁更大
if(mx>maxn){
maxn=mx;
for(int i=1;i<=t-1;i++)
ans[i]=a[i];} //保存所需要的邮票面值
return;
}
for(int i=a[t-1]+1;i<=mx+1;i++){ //继续找:为了避免重复,下一张邮票要比上一张邮票大,所以上边界是a[t-1]+1,同时它不能比最大连续值+1还大,不然最大连续值的下一个数就永远连不起来了
a[t]=i;
int x=dp(t,mx); //动归寻找此时的最大连续数
dfs(t+1,x);
}
}
int main(){
cin>>n>>k;
dfs(1,0); //先从第一张开始找,第一张前面没有数,所以所连续的最大数为 0
for(int i=1;i<=k;i++)//输出 注意打空格以及大写换行即可
cout<<ans[i]<<" ";
cout<<endl;
cout<<"MAX="<<maxn<<endl;
return 0;
}