P1049 [NOIP2001 普及组] 装箱问题

题目描述

有一个箱子容量为 �V,同时有 �n 个物品,每个物品有一个体积。

现在从 �n 个物品中,任取若干个装入箱内(也可以不取),使箱子的剩余空间最小。输出这个最小值。

输入格式

第一行共一个整数 �V,表示箱子容量。

第二行共一个整数 �n,表示物品总数。

接下来 �n 行,每行有一个正整数,表示第 �i 个物品的体积。

输出格式

  • 共一行一个整数,表示箱子最小剩余空间。

输入输出样例

输入 #1复制

24
6
8
3
12
7
9
7

输出 #1复制

0

说明/提示

对于 100%100% 数据,满足 0<�≤300<n≤30,1≤�≤200001≤V≤20000。

【题目来源】

NOIP 2001 普及组第四题

这道题看似是搜索,但是可以用背包做。

题目要求求出最小的剩余空间,也就是要求出最大的可装重量

这样,我们可以将一个物体的重量当作它的价值,进而将题目转变为一个基本的01背包问题:

有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数)和一个价值(等于体积)。

要求n个物品中,任取若干个装入箱内,使总价值最大。

对于每一个物体,都有两种状态:装 与不装

那么,对于任意重量m的最大价值 f (m) = max ( f ( m - w[i] ) + w[i], f (m) )(w为重量(即价值))

其中,f ( m - w[i] ) 指在装了物品i后,箱子的剩余容量能装的最大重量

f ( m - w[i] ) + w[i] 指在在装了物品i后,箱子能装的最大重量

程序如下:

#include<cstdio>
using namespace std;
int m,n;                m即箱子容量V
int f[20010];
int w[40];
int main(){
    int i,j;
    scanf("%d%d",&m,&n);
    for(i=1;i<=n;i++){
        scanf("%d",&w[i]);
    }
    for(i=1;i<=n;i++){
        for(j=m;j>=w[i];j--){                            注意:这里必须是从m到w[i],否则一个物体会被多次装入箱子,见例1
            if(f[j]<f[j-w[i]]+w[i]){
                f[j]=f[j-w[i]]+w[i];
            }
        }
    }
    printf("%d\n",m-f[m]);
}

例1: 输入:

5 1 1 假如在遍历容量m时从小到大遍历,你会发现:

f (2) = f (2 - 1) + w[1] = f (1) +w[1] = 2
f (3) = ... = 3
f (4) = 4
f (5) = 5
最后的答案就是5-5=0,然而正解是5-1=4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值