深度学习
迷你小龙虾
这个作者很懒,什么都没留下…
展开
-
CS224N@2019_HOMEWORK
CS224N2019HOMEWORKthis is HOMEWORK for CS224N2019.这段时间学习了cs224n,独立完成了课后作业,还剩下Final project没有完成(a5好像需要Stanford账号??),感觉还是收获不小的,后续还是打算完成DFP,不过重心还得转向cv了,毕竟要准备面试了,要是时间允许,好想把RL的内容也看看啊!!github链接...原创 2019-05-05 16:23:15 · 631 阅读 · 0 评论 -
深度学习中的dropout原理
1. Dropout简介1.1 Dropout出现的原因在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问...转载 2019-05-15 20:08:56 · 1243 阅读 · 0 评论 -
【深度学习】FCN全卷积网络
全卷积网络 Fully Convolutional Networks全连接层 -> 成卷积层全连接层和卷积层之间唯一的不同就是卷积层中的神经元只与输入数据中的一个局部区域连接,并且在卷积列中的神经元共享参数。然而在两类层中,神经元都是计算点积,所以它们的函数形式是一样的。因此,将此两者相互转化是可能的:对于任一个卷积层,都存在一个能实现和它一样的前向传播函数的全连接层。权重矩阵是一...转载 2019-05-24 19:58:47 · 199 阅读 · 0 评论 -
Pytorch - 模型保存与加载
原文:Saving and Loading Models作者:Matthew Inkawhich介绍一系列关于 PyTorch 模型保存与加载的应用场景,主要包括三个核心函数:[1] - torch.save保存序列化的对象(Serialized object)到磁盘.其中,应用了 Python 的 pickle 包,进行序列化,可适用于模型Models,张量Tensors,以及各种...转载 2019-05-12 14:34:04 · 152 阅读 · 0 评论 -
[深度学习]卷积神经网络综述
最近在准备算法岗面试,复习了一下常用的分类卷积网络的构造,包括:AlexNet,VGG,Inception,ResNet。AlexNet首先我们需要明确的是,在深度学习中,我们总是希望网络能够够“深”,一方面是由于万能逼近定理表明,如果一个函数可用k层结构以简洁的形式表达,那么用k-1层的结构表达则可能需要指数级数量的参数(相对于输入信号),且泛化能力不足,另一方面,我们希望能够层次化的表达分...转载 2019-05-16 22:08:40 · 1247 阅读 · 1 评论 -
RoiAlign-计算实例
最近在看MaskRCNN,贴上一个RoiAlign的计算实例。转自知乎假设特征图大小是1x256x200x272,rois大小是715x5(5列分别是:对应的图片id(这里只有一张图片,所以第一列全为0)、对应roi左上角的x,y坐标、roi右下角的x,y坐标),roi align后的输出大小为715x256x7x7。对于每一个roi (1个channel):把roi的坐标调整到合适的sca...转载 2019-05-30 15:27:31 · 2695 阅读 · 0 评论 -
[深度学习]Focal Loss的理解
总述Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。交叉熵首先,,回顾交叉熵的形式:L=−ylogy^−(1−y)log(1−y^)={−logy^, if y=1−log(1−y^), if y=0L=-ylog\hat{y}-(1...转载 2019-06-13 16:39:53 · 2235 阅读 · 0 评论 -
【转载】Anchor-free方法---CornerNet解读
转载自这里目标检测领域最近有个较新的方向:基于关键点进行目标物体检测。该策略的代表算法为:CornerNet和CenterNet。由于本人工作特性,对网络的实时性要求比较高,因此多用YoLov3及其变体。而就在今天下午得知,基于CornerNet改进的CornerNet-Squeeze网络居然在实时性和精度上都超越了YoLov3,我还是蛮激动的,故趁此机会学习下该类检测算法的原理。corne...翻译 2019-06-13 21:31:16 · 615 阅读 · 0 评论