【机器学习基础】最小二乘与极大似然估计

最小二乘法

最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。它的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小:
E = ∑ m i e 2 = ∑ m i ( y i − y ^ ) 2 E=\sum_{m}^{i}e^2=\sum_{m}^{i}(y_i-\hat{y})^2 E=mie2=mi(yiy^)2
其中, y i y_i yi为观测样本, y ^ \hat{y} y^为我们的期望值, E E E即为损失函数,在机器学习中,我们通常最小化 E E E来确定昌参数。

直线拟合/多元线性回归

对于多元线性函数,有如下表达式: h θ ( x 1 , x 2 , . . . , x n ) = θ 0 + θ 1 x 1 + . . . + θ n x n h_\theta(x_1,x_2,...,x_n)=\theta_{0}+\theta_{1}x_1+...+\theta_{n}x_n hθ(x1,x2,...,xn)=θ0+θ1x1+...+θnxn
故损失函数可以写成如下形式: J ( θ ) = 1 2 ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 = 1 2 t r ( ( X θ − Y ) T ( X θ − Y ) ) J(\theta)=\frac{1}{2}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2=\frac{1}{2}tr((X\theta-Y)^T(X\theta-Y)) J(θ)=21i=1m(hθ(x(i))y(i))2=21tr((XθY)T(XθY))
note:对标量进行迹的运算不改变运算结果
于是,对 θ \theta θ求偏导: ∂ J ( θ ) ∂ θ = X T X θ − X T Y \frac{\partial J(\theta)}{\partial \theta}=X^{T}X\theta-X^{T}Y θJ(θ)=XTXθXTY
令偏导为0,得到: θ = ( X T X ) − 1 X T Y \theta=(X^{T}X)^{-1}X^{T}Y θ=(XTX)1XTY
这样,我们便得到了参数的解析解。需要注意的是,最小二乘法是在假定随机误差项服从标准(均值为0即可)的正态分布的特殊情况,即从极大似然的角度,当假定误差项服从均值为0的正态分布时,损失函数与最小二乘完全一致。下面我们来看看极大似然估计

极大似然估计

现在假设我们有m个样本,我们假设有:
在这里插入图片描述
假定误差项服从正态分布,我们有:
在这里插入图片描述
即有:
在这里插入图片描述
那么我们可以写成似然函数:
在这里插入图片描述
由极大似然估计的定义,我们需要 L ( θ ) L(\theta) L(θ)最大,那么我们怎么才能是的这个值最大呢?两边取对数对这个表达式进行化简如下:
在这里插入图片描述
需要 l ( θ ) l(\theta) l(θ)最大,也即最后一项的后半部分最小,也即:
在这里插入图片描述
可以看到,损失函数的表达形式与最小二乘完全一致,我们可以直接求偏导得到解析解或利用梯度下降得到全局最优(表达式为凸函数)。

总结

最小二乘和极大似然虽然在形式上一致(损失函数相同),但思考的角度并不一致。

  • 最小二乘法从模型拟合的角度出发,利用残差平方和来衡量拟合的优劣
  • 极大似然估计希望从模型中抽取 m m m个样本的概率最大,即似然函数最大。因此,极大似然估计需要知道参数分布,在线性模型中,一般假定残差项服从均值为0的正态分布,此时得到的损失表达式与最小二乘一致。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值