树及二叉树(数据结构)

本文详细介绍了数据结构中的树及其基本概念,包括根节点、结点度、树的深度等,并阐述了二叉树的定义、特性、满二叉树与完全二叉树的概念,以及二叉树的存储结构和遍历方法。通过对树和二叉树的理解,有助于深入掌握数据结构的基础知识。
摘要由CSDN通过智能技术生成

####一、 什么是树?
1,生活中的树 :
一

我们知道,对于一棵树,无论大小, 都是由数根,树干,节点以及树叶构成,那么,在数据结构中,也存在树这种结构,与之不同的是,它是一棵倒立的树 ,模型如下所示:
2,数据结构中的树:
图二
3,树的基本概念:

以上图中的树为例:

树:由N(N>=0)个结点构成的集合,N=0时是一棵空树 ,那么对N>1的树做出以下解释:

1、根节点:故名思义,根节点相当于一棵树的根,是树的基础,它是一个特殊的结点,根节点没有前驱结点,是本树所有结点的祖先。

如:A 就是该树的根节点

2、除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中:
(1)每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以没有后继,也可以有多个后继。

B,C,D是A的子树,各自又是以自身为根节点的树 ;

由此看出:树是递归定义的。

3,结点:结点包括一个数据元素及若干指向其他子树的分支(指针(索引))。
(A,B,C,D,E,F,G,H,I)

4, 叶结点:度为0的结点称为叶结点,叶节点也称为终端节点。
(E,F,G,H,I)

5, 分支结点:度不为0的结点称为分支结点,分支结点也称为非终端节点,一棵树中除叶节点外的所有节点都是分支结点。
(A,B,C,D)

6, 祖先结点:从根节点到该结点所经分支上的所有节点。
(E的祖先结点是A,B)
(F的祖先结点是A,C)

7,子孙结点:以某节点为根节点的子树中所有节点。
(A的子孙结点为B,C,D,E,F,G,H,I)

8,双亲结点:树中某节点有孩子结点,则这个结点称为它孩子结点的双亲结点,双亲结点也称为前驱结点。
(E的双亲结点是B,B的双亲结点是A)

9, 孩子结点:树中一个节点的子树的根节点称为该结点的孩子结点,孩子结点也称为后继结点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值