置信传播算法(Belief Propagation)简介

8 篇文章 26 订阅

基础知识

条件概率(Conditional Probability)

在这里插入图片描述
在这里插入图片描述
相互独立时,p(A | B) = p(A)

贝叶斯规则

贝叶斯网络(Bayesian Network)定了一个独立的结构:一个节点的概率仅依赖于它的父节点。贝叶斯网络适用于稀疏模型,即大部分节点之间不存在任何直接的依赖关系。
在这里插入图片描述
在这里插入图片描述

联合概率(Joint Probability)

表示所有节点共同发生的概率,将所有条件概率相乘:
在这里插入图片描述
我们最终的目标是计算准确的边缘概率(Marginal Probability),比如计算Hangover的概率,边缘概率为各种状态下所有其他节点对本节点影响的概率的和。

边缘概率(Marginal Probability)

即某个事件发生的概率,而与其它事件无关。边缘概率是这样计算的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(在两个离散随机变量的条件下,对于其中任一行或任一列求和,得到的概率就是边缘概率)。在本例中,针对不同的Hangover进行求和,得到的就是Hangover的边缘概率:
在这里插入图片描述
如果贝叶斯网络比较小,我们可以很简单的做边缘求和运算,但是如果问题规模较大,整个运算复杂度和数据将会以指数级增长。而利用BP算法去计算这样的网络问题,可以使得运算复杂度只和节点数线性相关。在这种意义上,BP算法在大型贝叶斯网络推断问题中扮演着越来越重要的作用。

马尔科夫随机场(Markov Random Field,MRF)

在这里插入图片描述

在概率图模型中,每个结点表示一个随机变量,结点之间的边表示这些随机变量之间的概率关系。在概率图模型中,所有随机变量的联合概率分布可以表示成若干随机变量子集的乘积。典型的概率图模型包括贝叶斯网和马尔科夫网。贝叶斯网是有向图模型, 用于表示随机变量之间的因果关系,而马尔科夫网是无向图模型, 用于表示随机变量的概率分布和概率推理,或者说是随机变量之间的软约束关系。

BP算法的基础就是建立于MRF上,MRF是一种条件概率模型,它可以被认为是马尔科夫链的一种推广,其对于场内所有节点的相关性都能很有效的描述。

假设我们观察到yi的一些信息,需要利用这些已知信息去推断关于隐含的场景xi的另外一些信息。每个顶点i都有一个状态值xi和一个观测值yi,每个状态值和观测值之间的似然函数为Фi(xi,yi),反映了i处的 xi和 yi存在统计依赖性,表示节点i的联合相容度,相邻邻居节点之间的势能量为Ψij(xi,xj),Ψij(xi,xj)也称为相邻节点之间的不连续代价,反映了节点变量 xi 和 xj 之间的相容性,体现了随机场自身具备的约束条件。

置信度传播(Belief Propagation,BP)

置信度传播算法利用结点与结点之间相互传递信息而更新当前整个MRF的标记状态,是基于MRF的一种近似计算。该算法是一种迭代的方法,可以解决概率图模型概率推断问题,而且所有信息的传播可以并行实现。经过多次迭代后,所有结点的信度不再发生变化,就称此时每一个结点的标记即为最优标记,MRF也达到了收敛状态。对于无环环路的MRF,BP算法可以收敛到其最优解。

BP算法的两个关键过程:(1)通过加权乘积计算所有的局部消息;(2)节点之间概率消息在随机场中的传递。
在这里插入图片描述
有了消息更新规则以及置信度计算公式,就可以先任意初始化每个 b i ( x i ) b_i(x_i) bi(xi),然后迭代的求解 m i j m_{ij} mij b i ( x i ) b_i(x_i) bi(xi)直至收敛,也就是说 m i j m_{ij} mij不再发生变化。也就是说首先对一些初始节点的消息赋初值,然后多次迭代消息传播和置信度更新直到它们稳定,最后就能从置信度中获取相应的概率。

置信度替换为概率:
在这里插入图片描述
b i ( x i ) b_i(x_i) bi(xi)为节点 i i i的联合概率分布,其中 m j i ( x i ) m_{ji}(x_{i}) mji(xi)代表隐含节点 j j j传递给隐含节点i的消息,表明了隐含节点 i i i对隐含节点 j j j当前状态的影响。 Ф i ( x i , y i ) Ф_i(x_i,y_i) Фi(xi,yi) 表示节点 i i i的局部证据,表示节点 i i i的联合相容度。节点i的置信度 b i ( x i ) b_i(x_i) bi(xi) i i i的邻域向 i i i传递的所有消息的乘积成正比,同时也正比于 Ф i ( x i , y i ) Ф_i(x_i,y_i) Фi(xi,yi) 1 / z i 1/z_i 1/zi为归一化常数,可使置信度的和为1, N ( i ) N(i) N(i) 为节点i的MRF一阶邻域。

消息传播的信息:
在这里插入图片描述
包含所有其他传入节点i的消息乘积, N ( j ) / i N(j) / i N(j)/i表示节点j的MRF一阶邻域中排除掉目标节点i的邻域。

有了消息更新规则以及置信度计算公式,就可以先任意初始化每个 b i ( x i ) b_i(x_i) bi(xi),然后迭代的求解 m i j m_{ij} mij b i ( x i ) b_i(x_i) bi(xi)直至收敛,也就是说 m i j m_{ij} mij不再发生变化。也就是说首先对一些初始节点的消息赋初值,然后多次迭代消息传播和置信度更新直到它们稳定,最后就能从置信度中获取相应的概率。

置信度传播算法中迭代运算步骤可以表示如下:

(1)随机选择相邻的隐含节点 x i x_i xi, x j x_j xj

(2)从 x i x_i xi x j x_j xj发送消息 m i j m_{ij} mij
在这里插入图片描述
在这里插入图片描述
(3)更新节点 x j x_j xj的置信度
在这里插入图片描述
在这里插入图片描述

(4)跳至步骤(1),直到算法收敛

在以此为规则的计算中,从无环图的边缘节点开始传播,然后如果一个节点所有相邻节点的消息都已经计算出来,则计算该节点的消息。易得整个无环图仅仅只需计算一遍就可以得到所有隐含节点的边缘概率分布。可以看出,BP 算法相对于一般的算法,时间复杂度上是大幅下降的。

在这里插入图片描述

高斯信念传播算法(Gaussian Belief Propagation)是一种用于解决概率图模型的推理问题的算法。它能够在复杂的图模型中进行高效的推理,并估计变量节点的边缘概率分布。下面是该算法的伪码实现: 1. 输入:图模型G=(V,E),其中V为变量节点集合,E为边集合; 2. 初始化:对于每个变量节点v∈V,初始化其边缘概率分布为高斯分布N(μ_v,σ_v^2); 3. Repeat until convergence: 4. for each 边e_ij∈E do: 5. if e_ij为一条消息发送边 then: 6. 计算消息m_ji(v_i)发送给节点v_i的边缘概率分布: 7. m_ji(v_i) = N(μ_ji(v_i),σ_ji(v_i)^2),其中μ_ji(v_i)和σ_ji(v_i)分别为其他节点v_k(k≠i,j)发来的消息的边缘统计量; 8. for each 节点v_i∈V do: 9. 计算节点v_i的后验边缘概率分布: 10. p_i(v_i) ∝ N(μ_i,σ_i^2) * ∏_{v_j∈N(i)}(m_ji(v_i)),其中N(i)为节点v_i的邻居节点集合; 11. 根据节点v_i的后验边缘概率分布更新节点v_i的边缘统计量μ_i和σ_i; 12. 输出:每个变量节点v的边缘概率分布p(v)。 该算法使用了高斯消息传递的思想,通过节点之间的信息传递逐步更新节点的边缘概率分布。其中,步骤6中计算的消息m_ji(v_i)考虑了其他节点发来的消息,步骤9中计算的节点后验边缘概率分布使用了当前节点及其邻居节点的信息。 以上是高斯信念传播算法的伪码实现,通过该算法可以有效地进行图模型的推理,并得到变量节点的边缘概率分布。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值